BACCALAURÉAT GÉNÉRAL

SESSION 2011

MATHÉMATIQUES

Série S

Durée de l'épreuve : 4 heure

Cefficient: 7

ENSEIGNEMENT OBLIGATOIRE

Les calculatrités électroniques de poche sont autorisées, conformément à la réglementation en vigueur.

Le sujet est con posé le 4 xercices indépendants. Le candidat doit traiter tous les exercices.

Dans chaque exercée, le andidat peut admettre un résultat précédemment donné dans le texte pour aborde les ques ons vantes, à condition de l'indiquer clairement sur la copie.

Le cardidat est irraté à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueux, qu'il aura développée.

Il est rappele que la qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l'appréciation des copies.

Avant de composer, le candidat s'assurera que le sujet comporte bien 5 pages numérotées de 1/5 à 5/5.

EXERCICE 1 (4 points)

Commun à tous les candidats

Pour chaque question, une seule des quatre réponses proposées est exacte.

Le candidat indiquera sur la copie le numéro de la question et la réponse choisie. Chaque réponse exacte rapporte un point. Aucune justification n'est demandée. Aucun point n'est enlevé en l'absence de réponse ou en cas de réponse fausse.

L'espace est rapporté au repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

On désigne par \mathscr{P} le plan d'équation 2x + 3y - z + 4 = 0 et, par A et B les points de coordonnées respectives (1, 2, -4) et (-3, 4, 1).

- 1. Soit \mathscr{D} la droite ayant pour représentation paramétrique $\begin{cases} x = -8 + 2t \\ y = 7 t \\ z = 6 + t \end{cases}$
 - Le plan ${\mathcal P}$ et la droite ${\mathcal D}$ sont sécants.
 - Le plan ${\mathcal P}$ et la droite ${\mathcal D}$ n'ont aucun point en commun.
 - La droite \mathcal{D} est incluse dans le plan \mathcal{P} .
 - Aucune des trois affirmations précédentes n'est vraie.
- **2.** On note \mathcal{P}' le plan d'équation x + 4y 3z + 4 = 0.
 - Les plans \mathcal{P} et \mathcal{P}' sont parallèles et distincts.
 - Les plans \mathcal{P} et \mathcal{P}' sont confondus.
 - Les plans \mathscr{P} et \mathscr{P}' sont sécants suivant une droite de vecteur directeur $-\vec{i} + \vec{j} + 2\vec{k}$.
 - Les plans \mathscr{P} et \mathscr{P}' sont sécants suivant une droite de vecteur directeur $-\vec{i} + \vec{j} + \vec{k}$.
- **3.** L'ensemble des points M de l'espace qui sont équidistants des points A et B est :
 - une droite passant par le point C de coordonnées $\left(-1, 3, -\frac{1}{2}\right)$,
 - une sphère de rayon $\frac{3\sqrt{5}}{2}$,
 - le plan d'équation $-4x + 2y + 5z \frac{5}{2} = 0$,
 - le plan d'équation $-4x + 2y + 5z + \frac{5}{2} = 0$.
- **4.** L'ensemble des points M de l'espace tels que $\|\overrightarrow{MA} 3\overrightarrow{MB}\| = 5$ est :
 - une sphère dont le centre a pour coordonnées $\left(-5, 5, \frac{7}{2}\right)$,
 - une sphère dont le centre a pour coordonnées $\left(5, -5, -\frac{7}{2}\right)$,
 - le plan d'équation -4x + 2y + 5z 5 = 0,
 - le plan d'équation $-4x + 2y + 5z + \frac{5}{3} = 0$.

EXERCICE 2 (5 points)

Commun à tous les candidats

Les trois questions peuvent être traitées de façon indépendante.

Un candidat participe à un jeu télévisé qui comporte deux épreuves. La première consiste à répondre à une question tirée au hasard parmi celles que l'assistante a prélevées dans une urne. Dans la seconde, il doit répondre à une série de 10 questions sur un thème qu'il choisit.

1. L'urne contient dix bulletins indiscernables au toucher comportant chacun une question. Toutes les questions sont différentes, quatre portent sur l'histoire, quatre portent sur la littérature et deux sur le sport.

En début d'émission, l'assistante tire au hasard et simultanément 4 bulletins de l'urne. On note A l'événement « les quatre questions portent sur l'histoire » et B l'événement « l'une au moins des quatre questions porte sur le sport ».

Déterminer la probabilité des événements A et B.

2. L'animateur annonce les thèmes sur lesquels portent les questions des quatre bulletins choisis par l'assistante. Il y a une question d'histoire, deux de littérature et une sur le sport. Le candidat tire au hasard l'un de ces quatre bulletins.

On admet que la probabilité que sa réponse soit correcte est 0,7 s'il s'agit d'une question d'histoire, 0,6 s'il s'agit d'une question de littérature et 0,5 pour une question sur le sport. On considère les événements suivants :

H: « la question posée au candidat porte sur l'histoire »

L : « la question posée au candidat porte sur la littérature »

S: « la question posée au candidat porte sur le sport »

C : « le candidat répond correctement à la question posée »

- a. Représenter par un arbre pondéré la situation correspondant à cette première épreuve.
- **b.** Calculer la probabilité de l'événement C.
- **c.** Sachant que le candidat a répondu correctement, quelle est la probabilité que la question posée ait porté sur le sport?
- **3.** Le candidat a réussi cette première épreuve et choisit l'histoire comme thème pour la seconde épreuve. Les dix questions qu'on lui pose sont indépendantes et on suppose toujours que la probabilité qu'il réponde correctement à chaque question est égale à 0,7. On désigne par *X* la variable aléatoire prenant pour valeur le nombre de bonnes réponses données par le candidat.
 - **a.** Soit k un entier compris entre 0 et 10. Quelle est l'expression de la probabilité de l'événement $\{X = k\}$ en fonction de k? On justifiera la réponse.
 - **b.** Déterminer la probabilité que le candidat donne au moins neuf bonnes réponses. On arrondira le résultat à 10^{-2} .

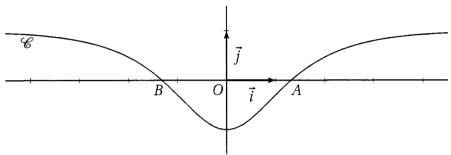
EXERCICE 3 (6 points)

Commun à tous les candidats

Soit f la fonction définie sur \mathbb{R} par $f(x) = 1 - \frac{4e^x}{e^{2x} + 1}$.

On note \mathscr{C} sa courbe représentative dans un repère orthogonal $(O; \overrightarrow{i}, \overrightarrow{j})$.

Sur le graphique ci-dessous on a tracé la courbe \mathscr{C} . Elle coupe l'axe des abscisses aux points A et B.



Partie A

L'objet de cette partie est de démontrer certaines propriétés de la fonction f que l'on peut conjecturer à partir du graphique.

- **1.** La fonction f semble croissante sur l'intervalle $[0, +\infty[$.
 - **a.** Vérifier que pour tout réel x, $f'(x) = \frac{4e^x(e^{2x}-1)}{(e^{2x}+1)^2}$.
 - **b.** En déduire le sens de variation de la fonction f sur l'intervalle $[0, +\infty[$.
- **2.** La droite d'équation x = 0 semble être un axe de symétrie de la courbe \mathscr{C} . Démontrer que cette conjecture est vraie.
- **3.** On désigne par *a* l'abscisse du point *A* et on pose $c = e^a$.
 - **a.** Démontrer que le réel c est une solution de l'équation $x^2 4x + 1 = 0$. En déduire la valeur exacte de a.
 - **b.** Donner le signe de f(x) selon les valeurs de x.

Partie B

L'objet de cette partie est d'étudier quelques propriétés de la fonction F définie sur $\mathbb R$ par :

$$F(x) = \int_0^x f(t) \, \mathrm{d}t.$$

- **1.** Déterminer les variations de la fonction F sur \mathbb{R} .
- **2.** Interpréter géométriquement le réel F(a). En déduire que $-a \le F(a) \le 0$.
- **3.** On cherche la limite éventuelle de F en $+\infty$.
 - **a.** Démontrer que pour tout réel positif t, $f(t) \ge 1 4e^{-t}$.
 - **b.** En déduire que pour tout réel positif x, $F(x) \ge x 4$ et déterminer la limite de F(x) lorsque x tend vers $+\infty$.
- **4.** Dans cette question, toute trace de recherche ou d'initiative, même incomplète, sera prise en compte dans l'évaluation.

Déterminer la limite de F(x) lorsque x tend vers $-\infty$.

EXERCICE 4 (5 points)

Candidats n'ayant pas suivi l'enseignement de spécialité

Le plan complexe est rapporté à un repère orthonormal direct $(O; \overrightarrow{u}, \overrightarrow{v})$. On prend 2 cm pour unité graphique.

Partie A - Restitution organisée de connaissances

Soient A, B deux points du plan d'affixes respectives a et b. On rappelle que :

- * $(\overrightarrow{u}, \overrightarrow{AB}) = \arg(b-a) + 2k\pi$ où $k \in \mathbb{Z}$.
- * L'image du point B par la rotation de centre A et d'angle θ est le point C défini par :

$$AC = AB$$
 et si $A \neq B$, $(\overrightarrow{AB}, \overrightarrow{AC}) = \theta + 2k\pi o \mathring{\mathbf{u}} \ k \in \mathbb{Z}$.

Exprimer l'affixe c du point C en fonction de a, b et θ .

Partie B

1. Résoudre dans \mathbb{C} l'équation $2z^2 - 6z + 9 = 0$.

Dans la suite de l'exercice, on désigne par P, Q et R les points d'affixes respectives

$$z_P = \frac{3}{2}(1+i), \quad z_Q = \frac{3}{2}(1-i) \quad \text{et} \quad z_R = -2i\sqrt{3}.$$

- **2.** Placer les points *P*, *Q*, *R* sur une figure que l'on complètera au fur et à mesure de la résolution de l'exercice.
- **3.** On note *S* le symétrique du point *R* par rapport au point *Q*. Vérifier que l'affixe z_S du point *S* est $3 + i(2\sqrt{3} 3)$.
- **4.** Soit r la rotation de centre O et d'angle $\frac{\pi}{2}$. Déterminer les affixes z_A et z_C des points A et C, images respectives des points R et S par la rotation r.
- **5.** On désigne par B et D les images respectives des points S et R par la translation de vecteur $3\vec{v}$.

Calculer les affixes z_B et z_D des points B et D.

- **6. a.** Démontrer que $\frac{z_C z_P}{z_B z_P} = i$.
 - **b.** En déduire la nature du quadrilatère *ABCD*.