* Banque filière PT *

Epreuve de Mathématiques II-B

Durée 4 h

Le problème porte sur l'étude des équations qui régissent le mouvement d'une particule d'une fibre dans un fluide lui-même en mouvement.

Dans tout ce problème, \mathbb{R}^3 est muni de sa structure euclidienne canonique, sa base canonique B_0 est notée $\{\vec{e_i}\}_{1 \leq i \leq 3}$ et le repère associé est (O, B_0) . Le produit scalaire de deux éléments \vec{u} et \vec{v} est noté $\vec{u} \cdot \vec{v}$ et la norme d'un élément \vec{u} est notée $\|\vec{u}\|$.

Première partie

Soit $\vec{F}: t \to \vec{F}(t)$ une fonction de classe C^1 de \mathbb{R} dans \mathbb{R}^3 et a un endomorphisme de \mathbb{R}^3 .

1. On considère le système différentiel suivant:

$$\frac{d\vec{F}}{dt} = a(\vec{F}) \tag{E}$$

- (a) Que peut-on dire de l'ensemble des solutions de (E) vérifiant une condition du type $\vec{F}(t_0) = \vec{F_0}$ où t_0 et $\vec{F_0}$ sont fixés?
- (b) Soit \vec{F} une solution de (E). Montrer alors que si il existe un réel t_0 tel que $\vec{F}(t_0) = \vec{0}$, \vec{F} est la fonction nulle.

Dans la suite, on supposera toujours que \vec{F} ne s'annule pas.

- 2. On définit alors les fonctions $\nu:t\to\parallel\vec{F}(t)\parallel$ et $\vec{f}:t\to \frac{1}{\nu(t)}\vec{F}(t)$
 - (a) Montrer que ν et \vec{f} sont des fonctions dérivables .
 - (b) Vérifier alors que f(t) et f'(t) sont deux vecteurs orthogonaux pour tout réel t.
 - (c) Calculer la dérivée de ν .
- 3. Montrer que si \vec{F} vérifie le système (E), la fonction vectorielle \vec{f} vérifie le système différentiel:

$$\frac{d\vec{f}}{dt} = a(\vec{f}) - (a(\vec{f}) \cdot \vec{f}) \, \vec{f} \tag{e}$$

Deuxième partie

Soient deux réels $\lambda \in]-1,1[$ et G>0. On pose $r=\sqrt{\frac{1+\lambda}{1-\lambda}}.$

Dans la suite du problème, a est l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base B_θ est

$$A = \left(\begin{array}{ccc} 0 & G(\lambda - 1) & 0 \\ G(\lambda + 1) & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

On cherche \vec{F} la solution de (E) vérifiant la condition initiale $\vec{F}(0) = x_0 \vec{e_1} + y_0 \vec{e_2} + z_0 \vec{e_3}$. On pose $\vec{F}(t) = x(t)\vec{e_1} + y(t)\vec{e_2} + z(t)\vec{e_3}$.

- 1. (a) Donner l'expression de z(t).
 - (b) Intégrer (E) lorsque $x_0 = y_0 = 0$.
- 2. Montrer que $r^2x(t)x'(t) + y(t)y'(t) = 0$ pour tout réel t. Que peut-on en déduire pour les courbes intégrales de (E)?
- 3. On pose $\omega = G\sqrt{1-\lambda^2}$.
 - (a) Vérifier que x et y sont solutions de l'équation différentielle

$$\frac{d^2u}{dt^2} + \omega^2 u = 0.$$

- (b) Intégrer alors (E) lorsque $x_0^2 + y_0^2 \neq 0$.
- (c) On suppose dans cette question que $x_0 \neq 0$. Vérifier qu'il existe une constante t_0 (à définir en fonction de x_0, y_0, r et ω) telle que:

$$\frac{y(t)}{x(t)} = r \tan \omega (t - t_0)$$

lorsque t est au voisinage de 0.

Troisième partie

Soit \vec{F} une solution de (E) ne s'annulant pas et \vec{f} la fonction vectorielle unitaire associée, c'est à dire $\vec{f} = \frac{\vec{F}}{\|\vec{F}\|}$.

On pose $\vec{f(t)} = \sin \theta(t) \cos \phi(t) \vec{e_1} + \sin \theta(t) \sin \phi(t) \vec{e_2} + \cos \theta(t) \vec{e_3}$ où θ et ϕ sont des fonctions dérivables de R dans lui-même.

Les valeurs de \vec{f} , θ et ϕ en 0 seront notées \vec{f}_0 , θ_0 et ϕ_0 .

- (a) Illustrer par une figure la définition de $\theta(t)$ et $\phi(t)$.
 - (b) Prouver que si il existe t_0 tel que $\sin \theta(t_0) = 0$, alors $\sin \theta$ est la fonction identiquement nulle.
 - (c) Prouver que si il existe t_0 tel que $\cos \theta(t_0) = 0$, alors $\cos \theta$ est la fonction identiquement nulle.
 - (d) Démontrer que si il existe t_0 tel que $\sin 2\theta(t_0) = 0$, θ est une fonction constante.
- 2. Soient $\vec{u}(t) = \cos \phi(t)\vec{e_1} + \sin \phi(t)\vec{e_2}$ et $\vec{v(t)}$ le vecteur tel que $B_{\phi}(t) = (\vec{u(t)}, \vec{v(t)}, \vec{e_3})$ soit une base orthonormale directe.
 - (a) Errire f'(t) dans la base $B_{\phi}(t)$ en fonction de $\theta(t), \phi(t), \theta'(t)$ et $\phi'(t)$.
 - (b) Donner la matrice $A_{\phi}(t)$ de a dans la base $B_{\phi}(t)$.
 - (c) Calculer $a(f(\vec{t})) \cdot f(\vec{t})$
- (a) Ecrire le système différentiel (S) vérifié par θ et ϕ équivalent à (e).
 - (b) Prouver que si $\vec{f_0}$ et $\vec{e_3}$ ne sont pas colinéaires, le système (S) équivaut à :

$$\frac{d\phi}{dt} = 2G\lambda\cos^2\phi + G(1-\lambda) \tag{1}$$

$$\frac{d\phi}{dt} = 2G\lambda\cos^2\phi + G(1-\lambda)$$

$$\frac{d\theta}{dt} = 2G\lambda\sin\phi\cos\phi\sin\theta\cos\theta$$
(1)

- 4. Intégrer (S) lorsque $\lambda = 0$ et donner la trajectoire du point m défini par $\overrightarrow{Om(t)} = \overrightarrow{f(t)}$.
- 5. On suppose maintenant que λ est non nul.
 - (a) Prouver que toute solution ϕ de (1) est strictement monotone et réalise une bijection de \mathbb{R} sur \mathbb{R} .
 - (b) Montrer que θ reste constant le long d'une courbe intégrale si et seulement si $\sin 2\theta_0 = 0.$
 - (c) Lorsque $\sin 2\theta_0 \neq 0$, montrer que (2) s'intègre à l'aide de (1) en:

$$\tan \theta = \frac{C}{\sqrt{\sin^2 \phi + r^2 \cos^2 \phi}}$$

où C est une constante.

- 6. On désigne par \mathcal{C}_{λ} l'ensemble des courbes intégrales de (1) et par ϕ_1 une solution de (1).
 - (a) Soit un réel t_1 . Montrer que $\phi_2: t \to \phi_1(t-t_1)$ est aussi solution de (1). En déduire une propriété géométrique de l'ensemble \mathcal{C}_{λ} .
 - (b) Montrer que $\phi_3: t \to -\phi_1(-t)$ est aussi solution de (1). En déduire une propriété géométrique de l'ensemble \mathcal{C}_{λ} .
 - (c) Montrer que ϕ_4 : $t \to \frac{\pi}{2} \phi_1(-t)$ est solution de l'équation (1) associée au paramètre $-\lambda$. Comment déduit-on $\mathcal{C}_{-\lambda}$ de \mathcal{C}_{λ} ?
- 7. On définit, pour tout entier relatif k, le réel t_k par $\phi(t_k) = k\pi + \frac{\pi}{2}$.
 - (a) Pour intégrer (1) sur $]t_k, t_{k+1}[$, effectuer le changement de variables $u = \tan \phi$ et $t = \tau(u)$.
 - (b) Montrer que la nouvelle équation obtenue s'intègre en:

$$\tau(u) = \frac{1}{Gr(1-\lambda)} \operatorname{Arctan} \frac{u}{r} + \tau_k$$

où τ_k est une constante que l'on déterminera.

(c) Retrouver alors sans utiliser la deuxième partie que \vec{f} est une fonction périodique de période $T=\frac{\pi}{G}(r+\frac{1}{r})=\frac{2\pi}{\omega}$.