* Banque filière PT *

Epreuve de Mathématiques I-A

Durée 4 h

L'usage de calculatrices est interdit

Partie I

Etude d'un pendule amorti

Nous considérons un pendule plongé dans un fluide visqueux (l'air par exemple). Si $\alpha(t)$ désigne l'angle que fait le pendule par rapport à la verticale (orientée vers le bas), alors $\alpha(t)$ vérifie une équation différentielle d'ordre 2 du type :

$$\alpha''(t) = -b \sin(\alpha(t)) - c \alpha'(t), \tag{1}$$

où b et c sont des constantes strictement positives.

1. Si l'on pose $Y(t) = \begin{pmatrix} \alpha(t) \\ \alpha'(t) \end{pmatrix}$, vérifier que Y est solution du système différentiel

$$Y'(t) = G(Y(t))$$

où G est la fonction de \mathbb{R}^2 dans \mathbb{R}^2 définie pour tout $y=\left(\begin{array}{c}y_1\\y_2\end{array}\right)\in\mathbb{R}^2$ par

$$G(y) = G\left(\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right)\right) = \left(\begin{array}{c} y_2 \\ -b \sin y_1 - c y_2 \end{array}\right).$$

- 2. Résoudre l'équation G(y) = 0.
- 3. Déterminer les solutions constantes de l'équation (1).
- 4. Calculer la matrice jacobienne de G en un point $y \in \mathbb{R}^2$.
- 5. Calculer les valeurs propres (réelles ou complexes) de cette matrice jacobienne aux points obtenus à la question 2.
- 6. Quel lien peut-on établir (dans ce cas) entre le signe de la partie réelle des valeurs propres de la matrice jacobienne et la nature des états d'équilibre du système ?

Partie II

Etude d'un système linéaire

Dans toute cette partie, on considère une matrice carrée A de taille d à coefficients complexes et le système différentiel linéaire

$$Y'(t) = AY(t) \tag{2}$$

où Y(t) est un vecteur colonne de \mathbb{C}^d .

1. Soit λ un nombre complexe. Déterminer les fonctions $y: \mathbb{R} \longmapsto \mathbb{C}$ solutions de l'équation différentielle

$$y' = \lambda y$$
.

2. Soit λ et μ deux nombres complexes et P un polynôme à coefficients complexes de degré n. On considère l'équation différentielle

$$y' = \lambda y + P(t)e^{\mu t} \tag{*}$$

(a) Montrer qu'il existe un polynôme Q tel que la fonction définie pour tout t réel par

$$y(t) = Q(t)e^{\mu t}$$

soit solution de l'équation (*).

- (b) Déterminer le degré de Q en fonction de $\lambda \mu$.
- (c) En déduire que toute solution de l'équation différentielle (*) s'écrit sous la forme

$$y(t) = Ce^{\lambda t} + Q(t)e^{\mu t}$$

où C est un nombre complexe et Q est un polynôme à coefficients complexes de degré au plus égal à n+1.

3. Plus généralement, si $\lambda, \mu_1, \ldots, \mu_k$ sont des nombres complexes et P_1, \ldots, P_k des polynômes à coefficients complexes, de degrés respectifs n_1, \ldots, n_k , montrer que toute solution de l'équation différentielle

$$y' = \lambda y + \sum_{i=1}^{k} P_i(t)e^{\mu_i t}$$

s'écrit sous la forme

$$y = Ce^{\lambda t} + \sum_{i=1}^{k} Q_i(t)e^{\mu_i t}$$

où C est un nombre complexe et les Q_i sont des polynômes à coefficients complexes de degrés respectifs au plus égaux à $n_i + 1$.

4. On suppose que la matrice A est triangulaire supérieure, n'admettant que λ comme valeur propre. Montrer que toute solution de l'équation (2) peut s'écrire

$$Y(t) = e^{\lambda t}(a_0 + ta_1 + \dots + t^{d-1}a_{d-1})$$

où les a_i sont des vecteurs de \mathbb{C}^d .

- 5. Dans le cas général, on note $\lambda_1, \ldots, \lambda_d$ les valeurs propres (complexes, non nécessairement distinctes) de A.
 - (a) On suppose que la matrice A est triangulaire supérieure. Montrer que toute solution complexe du système (2) peut s'écrire sous la forme

$$Y(t) = \sum_{i=1}^{d} \left(e^{\lambda_i t} \sum_{j=0}^{d-1} t^j a_j^{(i)} \right)$$

où les $a_j^{(i)}$ sont des vecteurs de \mathbb{C}^d .

- (b) Montrer que, si A est une matrice quelconque, les solutions sont encore de la forme précédente.
- 6. On suppose que toutes les valeurs propres de A ont une partie réelle strictement négative.
 - (a) Déterminer les vecteurs Z de \mathbb{R}^d tels que AZ = 0.
 - (b) Calculer $\lim_{t \to +\infty} Y(t)$ où Y est une solution de (2).

Partie III

Etude d'une équation différentielle non-linéaire : cas unidimensionnel

Dans toute cette partie, on considère une fonction g de \mathbb{R} sur \mathbb{R} de classe \mathcal{C}^1 telle que g(0) = 0 et $g'(0) = -\lambda < 0$. On étudie l'équation différentielle

$$y'(t) = g(y(t)). (3)$$

On suppose que la fonction g est telle que, pour tous réels t_1 et y_1 fixés, il existe une unique fonction y solution de l'équation (3) sur \mathbb{R} et vérifiant de plus $y(t_1) = y_1$.

Dans toute la suite, on fixe un réel y_0 et y désigne l'unique solution de (3) sur \mathbb{R} vérifiant $y(0) = y_0$.

- 1. Que peut-on dire de la solution y lorsque $y_0 = 0$?
- 2. Montrer que si $y_0 \neq 0$, alors la fonction y ne s'annule pas sur \mathbb{R} .
- 3. On définit la fonction h de \mathbb{R} dans \mathbb{R} par

$$\begin{cases} h(x) = \frac{g(x)}{x} + \lambda & \text{pour tout } x \neq 0 \\ h(0) = 0 \end{cases}$$

Montrer que la fonction h est continue sur \mathbb{R} .

4. Montrer qu'il existe un $r_0 > 0$ tel que, pour tout $x \in \mathbb{R}$,

$$|x| < r_0 \Longrightarrow |h(x)| < \frac{\lambda}{2}$$

- 5. On suppose dans cette question que $0 < y_0 < r_0/2$.
 - (a) Montrer qu'il existe un T > 0 tel que, pour tout $s \in [0, T]$,

$$0 < y(s) < r_0$$
.

(b) En déduire que, pour tout s dans [0, T], on a

$$\frac{y'(s)}{y(s)} < -\frac{\lambda}{2}$$

(c) Montrer que, pour tout $t \in [0, T]$,

$$0 < y(t) < e^{-\frac{\lambda}{2}t} y_0.$$

- (d) En déduire que cette inégalité est encore vraie pour $t \in [T, 2T]$.
- 6. Montrer finalement que l'on a

$$|y_0| < \frac{r_0}{2} \Longrightarrow \forall t \ge 0, \quad |y(t)| \le e^{-\frac{\lambda}{2}t} |y_0|.$$

7. Que vaut $\lim_{t\to+\infty} y(t)$?

Partie IV

Etude d'une équation différentielle non-linéaire : cas multi-dimensionnel

Dans toute cette partie, on considère une application G de \mathbb{R}^d à valeurs dans \mathbb{R}^d , de classe \mathcal{C}^1 et telle que G(0) = 0. On note A la matrice jacobienne de G en G on suppose que la matrice G est trigonalisable dans G et que ses valeurs propres G, ..., G (non nécessairement distinctes) sont toutes strictement négatives.

On étudie le système différentiel non-linéaire

$$Y'(t) = G(Y(t)). (4)$$

On suppose que G est telle que, pour tout vecteur Y_0 de \mathbb{R}^d , il existe une unique fonction Y(t) de \mathbb{R} dans \mathbb{R}^d solution de (4) et vérifiant $Y(0) = Y_0$. Dans toute la suite, Y désigne cette fonction.

- 1. On note $\| \|$ la norme euclidienne de \mathbb{R}^d et <, > le produit scalaire usuel. On pose $E(t) = \|Y(t)\|^2$. Montrer que E est de classe \mathcal{C}^1 et calculer sa dérivée en fonction de Y.
- 2. On définit l'application H de \mathbb{R}^d dans \mathbb{R}^d par

$$\forall Z \in \mathbb{R}^d, \qquad \begin{cases} H(Z) = \frac{1}{\|Z\|} (G(Z) - AZ) & \text{si } Z \neq 0 \\ H(0) = 0 \end{cases}$$

et on admet que cette fonction est continue sur \mathbb{R}^d . Montrer que, pour tout $t \in \mathbb{R}$,

$$E'(t) \le 2\langle AY(t), Y(t) \rangle + 2 ||Y(t)||^2 ||H(Y(t))||.$$

- 3. Soit u l'endomorphisme canoniquement associé à A. Montrer qu'il existe une base $\mathcal{B} = (e_1, \ldots, e_d)$ de \mathbb{R}^d dans laquelle la matrice de u est triangulaire supérieure.
- 4. Pour tout $\alpha > 0$, on pose $\mathcal{B}_{\alpha} = (e_1, \alpha e_2, \dots, \alpha^{d-1} e_d)$. Vérifier que \mathcal{B}_{α} est une base de \mathbb{R}^d .
- 5. Soit $\varepsilon > 0$. Montrer qu'il existe une base de \mathbb{R}^d dans laquelle la matrice de u a tous ses coefficients hors de la diagonale de valeur absolue strictement plus petite que ε .
- 6. Soit P une matrice inversible. On pose $Y_*(t) = PY(t)$ et $H_*(Y_*) = H(Y)$.
 - (a) Montrer que Y_* est solution de $Y'_* = PG(P^{-1}Y_*)$.
 - (b) En reprenant le raisonnement précédent appliqué à Y_* , montrer que l'on peut choisir la matrice P telle que

$$\frac{d}{dt} \|Y_*(t)\|^2 \le \|Y_*(t)\|^2 \left(-\lambda + 2 \|H_*(Y_*(t))\|\right)$$

οù

$$\lambda = \min_{1 \le i \le d} |\lambda_i|.$$

7. En utilisant les résultats de la partie III, montrer qu'il existe r > 0 tel que, si $||Y_0|| < r$, alors

$$\lim_{t \to +\infty} Y(t) = 0.$$

Remarque : le raisonnement précédent peut se généraliser au cas d'une matrice A quelconque que l'on trigonalise dans \mathbb{C} . Une condition suffisante pour que 0 soit un point d'équilibre stable est alors que toutes les valeurs propres de A soient de partie réelle strictement négative.