

EPREUVE SPECIFIQUE - FILIERE PC

MATHEMATIQUES 2

Durée: 4 heures

Les calculatrices sont interdites

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il la signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

La partie IV peut être traitée indépendamment des autres.

PARTIE I

Pour tout $n \in \mathbb{N}$, on note P_n la fonction polynôme de la variable réelle x définie par :

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \Big[(x^2 - 1)^n \Big]$$

- I.1 Donner une expression explicite des fonctions polynômes P_0 , P_1 , P_2 , P_3 .
- **I.2** Exprimer $P_n(-x)$ en fonction de $P_n(x)$.
- **I.3** Calculer $P_n(0)$ et $P'_n(0)$.
- I.4 En effectuant de deux façons différentes le calcul de $\frac{d^{n+2}}{dx^{n+2}} [(x^2-1)^{n+1}]$, montrer que l'on a : $(1-x^2)P_n''(x) 2xP_n'(x) + n(n+1)P_n(x) = 0.$
- **I.5** Soit k un nombre entier compris au sens large entre 0 et n-1. Préciser l'ordre de multiplicité de +1 et -1 en tant que racines de la dérivée d'ordre k de $(x^2-1)^n$.

En appliquant le théorème de Rolle aux dérivées successives de $(x^2-1)^n$, montrer que P_n admet n racines réelles distinctes, toutes comprises strictement entre -1 et +1.

PARTIE II

Soit f la fonction de deux variables réelles x, y définie par :

$$f(x,y) = \frac{1}{\sqrt{1 - 2xy + x^2}}$$

II.1 Représenter graphiquement l'ensemble \mathfrak{D}_f des couples $(x,y) \in \mathbb{R}^2$ en lesquels f(x,y) est définie.

Soit & l'ensemble des couples $(x,y) \in \mathbb{R}^2$ tels que $2|x| \cdot |y| + |x|^2 < 1$.

On admettra que l'on a sur δ un développement en série de f de la forme :

$$f(x,y) = \sum_{n=0}^{+\infty} A_n(y) x^n$$
 (E)

où les fonctions A_x sont de classe \mathcal{C}^{∞} , et que les dérivées partielles de f à tous les ordres, par rapport à l'ensemble des deux variables x et y, peuvent se calculer en dérivant terme à terme le deuxième membre de l'égalité (E).

- II.2 Représenter graphiquement l'ensemble &.
- II.3 Calculer $A_n(0)$ et $A'_n(0)$ pour tout $n \in \mathbb{N}$.
- **II.4**

II.4.1 Calculer
$$x \frac{\partial f}{\partial x}(x,y) + (x-y) \frac{\partial f}{\partial y}(x,y)$$
.

En déduire que l'on a $yA'_0(y) = 0$, et pour tout $n \ge 1$, $yA'_n(y) - A'_{n-1}(y) = nA_n(y)$ (1).

II.4.2 Calculer
$$(1-2xy+x^2)\frac{\partial f}{\partial x}(x,y)+(x-y)f(x,y)$$
.

En déduire que l'on a $A_1(y) - yA_0(y) = 0$, et pour tout $n \ge 2$:

$$nA_n(y) - (2n-1)yA_{n-1}(y) + (n-1)A_{n-2}(y) = 0$$
 (2)

- **II.4.3** En dérivant les relations obtenues à la question précédente, montrer que l'on a, pour tout $n \ge 1$, la relation $A'_{n}(y) yA'_{n-1}(y) = nA_{n-1}(y)$ (3).
- II.4.4 Déduire de ce qui précède que l'on a pour tout $n \in \mathbb{N}$:

$$(1-y^2)A_n''(y) - 2yA_n'(y) + n(n+1)A_n(y) = 0.$$

Exprimer $A_n(y)$ en fonction de $P_n(y)$ pour tout $y \in]-1, +1[$.

PARTIE III

On considère les fonctions F, C et S des deux variables réelles x et θ définies pour |x| < 1 et θ quelconque par :

$$F(x,\theta) = \frac{1}{1 - 2x\cos\theta + x^2}$$
, $C(x,\theta) = \frac{1 - x\cos\theta}{1 - 2x\cos\theta + x^2}$, $S(x,\theta) = \frac{x\sin\theta}{1 - 2x\cos\theta + x^2}$.

III.1 Pour x fixé tel que |x| < 1, déterminer les développements en séries de Fourier $\sum_{n=0}^{+\infty} a_n(x) \cos n\theta$ de $C(x,\theta)$ et $\sum_{n=0}^{+\infty} b_n(x) \sin n\theta$ de $S(x,\theta)$ considérées comme fonctions de la

variable θ . On montrera que $C(x,\theta) + iS(x,\theta) = \frac{1}{1 - xe^{i\theta}}$.

A-t-on les égalités $C(x,\theta) = \sum_{n=0}^{+\infty} a_n(x) \cos n\theta$ et $S(x,\theta) = \sum_{n=0}^{+\infty} b_n(x) \sin n\theta$ pour tout couple (x,θ) appartenant à $]-1, +1[\times \mathbb{R}]$?

III.2 Déduire de la question précédente le développement en série de Fourier $F(x,\theta) = \sum_{n=0}^{+\infty} u_n(x) \cos n\theta \quad \text{de } F(x,\theta) \quad \text{considérée comme fonction de la variable } \theta \text{ , ainsi que le développement en série entière } F(x,\theta) = \sum_{n=0}^{+\infty} v_n(\theta) x^n \quad \text{de } F(x,\theta) \quad \text{considérée comme fonction de la variable } x \text{ .}$

III.3 Montrer que pour tout $\theta \in \mathbb{R}$ on a $\sum_{k=0}^{n} P_k(\cos\theta) P_{n-k}(\cos\theta) = \frac{\sin(n+1)\theta}{\sin\theta}$, cette dernière fonction de θ étant supposée prolongée par continuité lorsque θ est multiple entier de π .

PARTIE IV

Soit λ un nombre réel non entier relatif. On considère l'équation différentielle linéaire en la fonction inconnue z de la variable réelle x, à valeurs réelles :

$$(L_{\lambda})$$
 $(1-x^2)z''(x)-2xz'(x)+\lambda(\lambda+1)z(x)=0$.

On se propose de déterminer les solutions de (L_{λ}) développables en série entière au voisinage de 0.

IV.1 Soit $z(x) = \sum_{n=0}^{+\infty} \alpha_n x^n$ la somme d'une série entière de rayon de convergence non nul. Déterminer la relation qui doit lier α_{n+2} et α_n pour que z soit solution de (L_{λ}) .

- IV.2 En déduire l'expression de α_n pour tout $n \in \mathbb{N}$.
- IV.3 Quel est le rayon de convergence des séries entières ainsi obtenues ?

Fin de l'énoncé