CCP 2000 physique 2

AI1a $m \frac{d}{dt} \mathbf{v} = -e\mathbf{E} - \alpha \mathbf{v}$ donne en champ nul : $\mathbf{v}(t) = \mathbf{v}(o) \exp(-\frac{t}{\tau}), \tau$ est un temps de relaxation

en régime stationnaire $\mathbf{v} = (-\frac{e}{\alpha})\mathbf{E}$ d'où $\mathbf{J} = -ne\mathbf{v} = \frac{ne^2}{\alpha}\mathbf{E}$ donc $\gamma = \frac{ne^2\tau}{m}$ AI1b AI1c $\tau \simeq 2, 1.10^{-16} \ s$

Les plans Mxz et Oxy sont de symétrie, b est partout parallèle à Oy, et nul dans xOy; . $\mathbf{rot}(\mathbf{b}) = \mu_0 \mathbf{J}$ donne $\frac{\partial b}{\partial z} = -\mu_0 J_x(z)$ d'où par intégration : à l'intérieur : $\mathbf{b} = -\mu_0 J z \mathbf{e}_y$

à l'extérieur, pour $z \leq \mp a/2$ on a par continuité $\mathbf{b} = \pm \mu_0 J \frac{a}{2} \mathbf{e}_y$ (uniformes), soit $b \simeq 6, 3\mu T$ AI2a $\boxed{m\frac{d}{dt}\mathbf{v} = -e\mathbf{v} \wedge \mathbf{B} - \alpha\mathbf{v}}$; $\tau \to \infty$ équivant à $\alpha \to 0$ alors $\frac{d}{dt}\mathbf{v} = \omega_c \wedge \mathbf{v}$ qui définit le vecteur rotation de \mathbf{v} : $\boxed{\omega_c = \frac{e}{m}\mathbf{B}}$; $\omega_c \simeq 2, 9.10^{12} \ rd.s^{-1}$

L'équation du mouvement fournit en régime stationnaire : $e\mathbf{E} = -e\mathbf{v} \wedge \mathbf{B} - \alpha \mathbf{v}$ que l'on développe, et on substitue $v = -\frac{1}{ne}J$ et $\frac{\alpha}{ne^2} = \frac{1}{\gamma}$

AI2c $E_y=0$ donne $J_y=\gamma \frac{B}{ne}J_x$ puis $E_x=\frac{1}{\gamma}(1+(\gamma \frac{B}{ne})^2)J_x$ que l'on peut écrire $E_x = \frac{1}{\gamma_1} J_x$ (γ_1 au lieu de γ); alors $R = \frac{1}{\gamma} \frac{L}{al}$ devient $R_1 = \frac{1}{\gamma_1} \frac{L}{al}$ d'où $\frac{\Delta R}{R} = \frac{\gamma}{\gamma_1} - 1 = (\gamma \frac{B}{ne})^2 \simeq +3,9.10^{-7}$ AI2d $E_y = -\frac{B}{ne} J$ et $V_H = \int_0^l E_y dy$ $\underline{\hat{a} \ x \ fix\acute{e}}$; soit $V_H = \frac{BI}{nea} \simeq 0,62 \ mV$

AI2d
$$E_y = -\frac{B}{ne}J$$
 et $V_H = \int_0^l E_y dy$ à $x \text{ fix\'e}$; soit $V_H = \frac{BI}{nea} \simeq 0,62 \text{ mV}$

L'effet Hall a des intérêts théoriques (mesure de n) et pratiques (sonde pour teslamètre).

AI2e $R_K = h/e^2 \simeq 25,9 \ k\Omega$ qui ne contient que des constantes fondamentales.

AII1a $\boxed{m\frac{d}{dt}\mathbf{v} = (-e)\mathbf{v} \wedge (\mathbf{B} + \mathbf{B}') - e\mathbf{E} - \alpha\mathbf{v}} \quad \text{l'effet de } \mathbf{B'} \text{ est n\'egligeable pourvu que} \\ v \ll c \quad \text{en admettant que } B' \sim E/c \text{ et en outre} \quad B' \ll B, \text{ hypoth\`eses raisonnables}.$

En développant et substituant on arrive à: $-\tau \frac{d}{dt}J_x = \tau \omega_c J_y - \gamma E_x + J_x$

AII2a Maxwell:
$$\mathbf{k} \bullet \underline{\mathbf{E}}_0 = \mathbf{0}$$
 $\mathbf{k} \wedge \underline{\mathbf{E}}_0 = \omega \underline{\mathbf{B}}_0'$ où $\mathbf{k} = k\mathbf{e}_z$ (réel si k est la norme...). $\mathbf{k} \bullet \underline{\mathbf{B}}_0' = \mathbf{0}$ $\mathbf{k} \wedge \underline{\mathbf{B}}_0' = -i\mu_0 \underline{\mathbf{J}}_0 - \frac{\omega}{c^2} \underline{\mathbf{B}}_0'$

On élimine $\underline{\mathbf{B}}_0'$ en utilisant $\mathbf{e}_z \wedge (\mathbf{e}_z \wedge \underline{\mathbf{E}}_0) = -\underline{\mathbf{E}}_0$ et on obtient: $(k^2 - \frac{\omega^2}{c^2})\underline{\mathbf{E}}_0 = i\omega\underline{\mathbf{J}}_0$ puis, par combinaisons: $(k^2 - \frac{\omega^2}{c^2} - i\omega\mu_0\gamma_{\pm})\underline{\mathbf{E}}_{\pm} = \mathbf{0}$

 $k^2 - \frac{\omega^2}{c^2} - i\omega\mu_0\gamma_{\pm} = 0$ dans laquelle (avec All2b La relation de dispersion est donc $\omega_c \tau \gg \omega \tau$ et $\omega_c \tau \gg 1$) on a $\gamma_{\pm} \simeq \pm i \frac{\gamma}{\omega_c \tau}$ d'où $k_{\pm}^2 = \frac{\omega^2}{c^2} \mp \frac{\mu_0 \gamma \omega}{\omega_c \tau}$ Donc $K = \sqrt{\mu_0 e \frac{n\omega}{B}}$ AII2c Pour $\omega < \omega_0 = \mu_0 c^2 e \frac{n\omega}{B}$ l'onde k_+ n'existe pas; on voit alors par $\underline{\mathbf{E}}_{0+} = \mathbf{0}$ que $\underline{E}_{0y} = i\underline{E}_{0x}$ et donc que la polarisation est <u>circulaire</u>.

B1b vert; $\nu_0 = c/\lambda_0 \simeq 5,45.10^{14} \; Hz$

B1b Différence de marche $\delta = 2x$; on a (cf Cours): $I = \frac{I(0)}{2}(1 + \cos(2\pi \frac{\delta}{\lambda_0}))$ donc $\tau = \frac{2x}{c}$

B2a $\nu_0 = 4,66.10^{14} Hz$

B2b Sommation des intensités $dI = (cte)(1 + \cos(2\pi\nu\tau))d\nu$ sur l'intervalle donné. Après calcul et simplification on obtient $\gamma_t(\tau) = \frac{\sin(\pi\tau\Delta\nu_{1/2})}{\pi\tau\Delta\nu_{1/2}} = \sin c(\pi\tau\Delta\nu_{1/2})$

B2c $V = |\gamma_t(\tau)|$ (voir figures)

B2d $\Delta \nu_{1/2} = 1/\tau_1 = c/2x_1 \simeq 9,43.10^8 Hz$, $L_t = 2x_1 = 31,8cm$, $\Delta \lambda \simeq \lambda_0 \frac{\Delta \nu}{\nu} \simeq 1,30 pm$

B3a $\nu_0 \simeq 5,19.10^{14} Hz$, jaune

 $I = (cte) \left[2 + \cos \left(2\pi \tau (\nu_0 - \Delta \nu_{1/2}) \right) + \cos \left(2\pi \tau (\nu_0 + \Delta \nu_{1/2}) \right) \right]$

donne après calcul $\gamma_t(\tau) = \cos(\pi \tau \Delta \nu_{1/2})$

B₃c (voir figures)

donc $\tau_1 \Delta \nu_{1/2} = \frac{1}{2}$ et $\tau_2 \Delta \nu_{1/2} = \frac{3}{2}$ d'où $\tau_2 - \tau_1 = 1/\Delta \nu_{1/2} = 278/\nu_0$, qui donne B3d

 $\Delta \nu_{1/2} = 1,87.10^{12}~Hz~~,~~L_t = c/\Delta \nu_{1/2} \simeq 0,161~mm~~{\rm et}~~\Delta \lambda \simeq \lambda/278 \simeq 2,1~nm$

B3e chaque composante a une largeur propre qui altère le contraste comme en B2.

 $C_1 = \frac{1}{1+\mu}$ $C_2 = \frac{\mu}{1+\mu}$ On obtient l'identification en prenant B4a

B4b Re($\gamma_t(\tau)$) = cos($\pi \tau \Delta \nu_{1/2}$), Im($\gamma_t(\tau)$) = $\frac{\mu-1}{\mu+1} \sin(\pi \tau \Delta \nu_{1/2})$ | $\gamma_t(\tau)$ | = $\sqrt{\text{Re}^2 + \text{Im}^2}$ $, \quad \tan(\alpha_t) = \frac{\mu - 1}{\mu + 1} \tan(\pi \tau \Delta \nu_{1/2})$

B4c I peut s'écrire $\frac{I(0)}{2} \left[1 + |\gamma_t(\tau)| \cos(\pi \tau \Delta \nu_{1/2} + \alpha_t) \right]$ on a donc $V = |\gamma_t(\tau)| = \left[\left(\frac{1-\mu}{1+\mu} \right)^2 + \frac{4\mu}{(1+\mu)^2} \cos^2(\pi \tau \Delta \nu_{1/2} + \alpha_t) \right]^{1/2}$

B4d $V_m = \frac{|1-\mu|}{1+\mu}$, $V_M = 1$ (voir figures)

B4e $\mu = 0$ correspond à une raie unique, on a V = 1 constant et $\alpha_t = -\pi \tau \Delta \nu_{1/2}$ (?)

 $\mu = 1$ correspond au cas du 3° avec $\alpha_t = 0$

B5a $\nu_0 \simeq 4,57.10^{14} \ Hz$, rouge

B5b $\Delta \nu_{1/2} = 1/2\tau_1 = c/4x_1 \simeq 8,82.10^9 \ Hz$, $\Delta \lambda_{1/2} \simeq \lambda \frac{\Delta \nu}{\nu} \simeq 12,7 \ pm$

B5c $\frac{\mu-1}{\mu+1}=0,15$ donne $\mu\simeq 1,35$ (α_t demandé mais dépend de τ ?)

figures du B2c, contraste puis intensité:

figures du B3c:

figures du B4d, faites pour $\mu = 0.5$: