Epreuve plutôt calculatoire qui n’exploite pratiquement que des notions du cours de première année.

A -1-1. O : Z = 8 ; 1s\(^2\) 2s\(^2\) 2p\(^4\).

A -1-2. C : Z = 6 ; 1s\(^2\) 2s\(^2\) 2p\(^2\).

A -2-1. \(^{13}\)C : Z = 6 ; nombre de charge ou numéro atomique = nombre de protons du noyau ; A = 13 : nombre de masse = nombre de nucléons (protons et neutrons) du noyau.

A -2-3-1. x\(^{13}\) = fraction molaire en isotope \(^{13}\)C : M\(_C\) = \((1-x^{13})M_{^{12}C} + x^{13}M_{^{13}C}\) .

A -2-3-2. w\(^{13}\) = fraction massique en isotope \(^{13}\)C : \(w^{13} = \frac{x^{13}M_{^{12}C}}{(1-x^{13})M_{^{12}C} + x^{13}M_{^{13}C}}\).

A -3-1. AX\(_2\)E\(_2\)

A -3-2. Molécule coudée

A -3-3. \(\vec{p} = \vec{p}_1 + \vec{p}_2 \neq 0\) car la molécule est coudée (contribution des doublets non liants négligée)

A -4-1. Pour C\(_2\) : AX\(_4\).

A -4-2-1. Pour C\(_1\) : AX\(_3\).

A -4-3. Pour C\(_1\), AX\(_3\) ⇒ atomes coplanaires : C\(_1\), C\(_2\) et les deux O.

A -4-4. Pour C\(_2\), AX\(_4\) ⇒ angle HC\(_2\)C\(_1\) de l’ordre de 109,5°.

B -1. C\(_2\)H\(_5\)OH (l) + 3O\(_2\) (g) = 2CO\(_2\) (g) + 3H\(_2\)O (g) [1]

B -2. \(\Delta_iH^\circ_{(25^\circ C)} = 2\Delta_iH^\circ_{CO_2(g)} + 3\Delta_iH^\circ_{H_2O(g)} - \Delta_iH^\circ_{C_2H_5OH(l)} - 3\Delta_iH^\circ_{O_2(g)}\).

A -N. : \(\Delta_iH^\circ_{(25^\circ C)} = -1235910\text{ J.mol}^{-1}\).

B -3. Transformation monotherme et monobare ⇒ PCI = Q = \(\Delta H = \Delta_iH^\circ_{C_2H_5OH(l)}\) avec \(\xi = \frac{m_{C_2H_5OH}}{M_{C_2H_5OH}}\).

A -N. : PCI = -2683.10\(^4\) kJ.kg\(^{-1}\).

B -4-1. | \(\text{état initial} \quad \text{état final (réaction totale ; }\xi = 4\text{ mol)}\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_2)H(_5)OH (l) + 3O(_2) (g) = 2CO(_2) (g) + 3H(_2)O (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 + 21 = 25</td>
<td>0 + 21-3(^4)4 = 9</td>
<td>8 + 12 = 20</td>
<td>N(_2) (g) = 79</td>
</tr>
</tbody>
</table>
\[P_{H_2O} = x_{H_2O}^f P_0 \text{ avec } x_{H_2O}^f = \frac{12}{9 + 8 + 12 + 79} = \frac{1}{9} \cdot \]
A.N. : \(P_{H_2O} = 0.11 \text{ bar.} \)

\[\Delta_{st} H^\circ(25°C) = \left[9C_{p, O_2(g)} + 8C_{p, CO_2(g)} + 12C_{p, H_2O(g)} + 79C_{p, N_2(g)} \right] \left[T_1 - 298.15 \right] = 0. \]
A.N. : \(T_1 = 1784 \text{ K.} \)

\[Q = \left[T_2 - T_1 \right] \left[9C_{p, O_2(g)} + 8C_{p, CO_2(g)} + 12C_{p, H_2O(g)} + 79C_{p, N_2(g)} \right] \cdot \]
A.N. : \(Q = -4661.10^3 \text{ kJ.} \)

\[Q = m_{cat} c_{p, cat} (40 - 15). \]
A.N. : \(m_{cat} = 44.60 \text{ kg.} \)

\[T_{rosée} \text{ telle que } P_{cat} = P_{H_2O} \text{ soit } \ln P_{H_2O} = 23.1864 - \frac{3816.44}{T_{rosée} - 46.13}. \]
A.N. : \(T_{rosée} = 321.1 \text{ K soit } 47.9 ^\circ\text{C.} \)

\[P_{H_2O} = P_{cat}^{40°C} = x_{H_2O}^f P_0 \text{ avec } x_{H_2O}^f = \frac{n_{H_2O}^f}{9 + 8 + 12 + 79 + n_{H_2O}^f}. \]
A.N. : \(n_{H_2O}^f = 7.63 \text{ mol et } n_{H_2O}^i = 12 - n_{H_2O}^f = 4.37 \text{ mol.} \)

\[\text{En supposant que le changement d’état de l’eau a lieu à } 40°C \text{ (donnée } L_{V(40°C)}), \]
\[Q = \left[9C_{p, O_2(g)} + 8C_{p, CO_2(g)} + 12C_{p, H_2O(g)} + 79C_{p, N_2(g)} \right] \left[313.15 - T_1 \right] + n_{H_2O}^i L_{V(40°C)}. \]
A.N. : \(Q = -4704.10^3 \text{ kJ.} \)

\[a = \frac{c_v V_a}{M_a}. \]
A.N. : \(a = 0.0347 \text{ mol.} \)

\[b = \frac{c_v M_b}{M_b}. \]
A.N. : \(b = 0.0488 \text{ mol.} \)

\[c = \frac{c_v M_b}{M_b} = \frac{c_{cat} V_{cat}}{M_c}. \]
A.N. : \(c = 0.282 \text{ mol.} \)

\[\text{écart initial} \quad \text{CH}_3\text{COOH} + \text{C}_2\text{H}_5\text{OH} = \text{CH}_3\text{COOC}_2\text{H}_5 + \text{H}_2\text{O} \quad [2] \]
\[\text{écart final (état d’équilibre)} \quad a-x \quad b-x \quad 0 \quad c \quad x \quad c+x \]

\[\text{Additivité des volumes car la solution est idéale} \quad V_T \text{ à l’équilibre} = V_T \text{ à l’état initial} = V_a + V_{cat} + V_b \]
\[= V_a + V_{cat} + \frac{m_b}{\rho_b}. \]
A.N. : \(V_T = 9.86 \text{ mL.} \)

\[\text{H}_2\text{O}^+ + \text{HO}^- = 2 \text{ H}_2\text{O} \quad K_e = \frac{1}{K_a} = 10^{14} > 10^4 \text{ réaction totale.} \]
À la première équivalence, $n_\text{H}_2\text{O}^-$ (à doser) = n_HO^- (V_1) soit $C_\text{cat}V_\text{cat} = C_\text{S}V_1$.

A.N. : $V_1 = 5,00 \text{ mL}.$

CH₃COOH + HO⁻ = CH₃COO⁻ + H₂O
$K^\circ = \frac{K_w}{K_a} = 10^{9,25} > 10^4$ réaction totale.

À la seconde équivalence, $n_{\text{CH}_3\text{COOH}}$ (à doser) = n_HO^- (de V_1 à V_2) soit $a-x = C_\text{S}(V_2-V_1)$.

A.N. : $a-x = 21,6 \times 10^{-3} \text{ mol}.$

À la première équivalence RPC : CH₃COOH + H₂O = CH₃COO⁻ + H₃O⁺
$K_a = 10^{-4,75} \Rightarrow$ réaction très limitée soit $C_1 = [\text{CH}_3\text{COOH}] + [\text{CH}_3\text{COO}^-] = \frac{a-x}{V_1 + V_\text{eau} + V_1}$.

A.N. : $C_1 = 0,333 \text{ mol.L}^{-1}.$

D’après la RPC, $[\text{H}_3\text{O}^+] = [\text{CH}_3\text{COO}^-]$ soit $K_a = \frac{[\text{H}_3\text{O}^+]^2}{[\text{CH}_3\text{COOH}][\text{H}_2\text{O}]}$ et $\text{pH} = \frac{1}{2} \left(\text{pK}_a - \log \frac{C_1}{C_0}\right)$.

A.N. : $\text{pH} = 2,6$ à la première équivalence.

Le jaune de métanil peut être utilisé comme indicateur coloré pour détecter la première équivalence car $\text{pH} = 2,6$ est compris dans sa zone de virage (1, 2-2, 8).

De la valeur de $a-x$ obtenue en C-3-2-2., on déduit :
- $x = 0,0131 \text{ mol},$
- $c+x = 0,295 \text{ mol},$
- $b-x = 0,0357 \text{ mol}.$

$K = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]} = \frac{(c+x)x}{(a-x)(b-x)}.$

A.N. : $K = 5,01.$

AgCl(s) = Ag⁺(aq) + Cl⁻(aq)
$K^\circ = \frac{a_{\text{Ag}^+}}{a_{\text{Cl}^-}}$ soit $a_{\text{Ag}^+} = \frac{K^\circ}{a_{\text{Cl}^-}}.$

A.N. : $a_{\text{Ag}^+} = 10^{-9,50}.$

Ag(s) + Cl⁻(aq) = AgCl(s) + e⁻.

$E = E^0_{\text{Ag}^+/\text{Ag}} = E_{\text{AgCl(s)/Ag}} = E^0_{\text{Ag}^+/\text{Ag}} + \frac{RT}{F} \ln a_{\text{Ag}^+}$
(Ag(s) = Ag⁺(aq) + e⁻)

A.N. : $E = 0,238 \text{ V à 25°C}.$