

EPREUVE SPECIFIQUE – FILIERE MP

SCIENCES INDUSTRIELLES (S.I.)

Durée: 3 heures

Les calculatrices sont autorisées

* * *

NB : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

* * *

Direction active à assistance variable

Grâce à l'électronique, les systèmes automobile intègrent des fonctions actives de plus en plus performantes qui améliorent autant l'agrément de conduite que la sécurité. Malheureusement, l'évolution des systèmes de direction automobile est contrainte par la réglementation qui impose de conserver une transmission mécanique entre le conducteur et les roues pour la fonction de braquage. La conception des directions actuelles découle donc d'un compromis qui doit être acceptable pour toutes les conditions de route (parking, autoroute, ville).

L'équipementier ZF produit depuis plusieurs années une direction électro-hydraulique à assistance variable appelée "Servotronic". La fonction d'assistance permet de modifier les efforts de manœuvre du volant en fonction de la vitesse du véhicule. La variation de l'assistance est destinée à réaliser :

- une direction "dure" à haute vitesse, de façon à concilier la stabilité directionnelle du véhicule et une meilleure sensation de contact,
- une direction "légère" à basse vitesse, de façon à limiter les efforts de manœuvre en ville ou au parking.

A partir de cette base, l'équipementier a introduit cette année une direction active appelée "Active Front Steering" ou AFS, **Image 1** du dossier technique, qui permet de plus :

- de moduler le rapport cinématique de la direction pour améliorer l'agrément de conduite,
- de superposer aux commandes du conducteur des ordres de braquage correctifs destinés à améliorer la stabilité du véhicule lors de situations critiques (dérapage, sur ou sous virage), en complément du système ESP (Electronic Stability Program) agissant sur le freinage.

Compte tenu de la complexité des géométries de train roulant et de la confidentialité vis à vis des données techniques, les applications développées dans le cadre de cette épreuve résultent de simplifications importantes et utilisent des valeurs numériques approchées.

A Introduction - Description des systèmes de direction

Pour l'ensemble de l'étude, on considèrera le schéma cinématique simplifié de la **Figure 1** (véhicule vue de dessus).

Direction conventionnelle

Dans une direction conventionnelle, les ordres de braquage issus du conducteur sont transmis aux roues par la chaîne cinématique suivante :

- le volant (angle de rotation θ_v). C'est l'interface entre le conducteur et le système de direction.
- un ensemble pignon-crémaillère. Il transforme la rotation du pignon, d'angle θ_p identique à l'angle volant θ_v , en translation x de la crémaillère. Le rapport de transmission est noté $\Delta x/\Delta\theta_p=A$.
- un ensemble de biellettes. Il transforme la translation x de la crémaillère en angle de braquage moyen des roues θ_r . Le rapport de transmission est noté $\Delta\theta_r/\Delta x = B$.

Dans la suite de l'étude, la démultiplication de direction D est définie comme le rapport entre la variation d'angle de rotation du volant et la variation d'angle moyen de braquage des roues, $D = \Delta\theta_v/\Delta\theta_r$.

Direction assistée hydraulique "servotronic"

L'ensemble conventionnel est complété par le dispositif d'assistance hydraulique, **Image 2** et **Figure 2.** Il comporte :

3

- une pompe hydraulique. Entraînée par courroie, elle produit l'énergie hydraulique nécessaire à la fonction d'assistance.
- un vérin d'assistance intégré au boîtier de crémaillère. Il agit directement sur la crémaillère afin de développer l'effort *F* d'assistance au braquage.
- une valve d'assistance, appelée bloc de distribution, insérée entre le volant et le pignon. Par sa fonction de distributeur hydraulique entre la source de pression hydraulique extérieure et le vérin d'assistance, elle module le débit Q fourni au vérin en fonction de l'écart entre la position angulaire de son tiroir rotatif lié au volant (égale à θ_V) et la rotation θ_C de sa chemise (égale à celle du pignon θ_P en l'absence de dispositif d'activation). Elle comporte une électrovanne qui permet de faire varier le taux d'assistance en fonction du courant i_V, élaboré par le calculateur.
- un capteur de vitesse d'avancement du véhicule. Il est intégré à un boîtier de conditionnement qui assure l'interface avec le calculateur.
- une unité de commande électronique (ou ECU). Elle définit le taux d'assistance en fonction de la vitesse du véhicule.

Dans la suite de l'étude, le taux d'assistance T est défini comme suit :

T = 1 - (moment à exercer sur le volant avec assistance / moment à exercer sur le volant sans assistance)

Direction assistée active "Active Front Steering"

La direction « servotronic » est complétée par un ensemble électromécanique, **Image 3**, inséré entre le bloc de distribution et le pignon. Il comprend :

- un moteur d'activation électrique sans balais (brushless). Il intègre l'amplificateur de puissance électrique qui reçoit le signal de commande électrique U_m issu de l'ECU. Sa position angulaire est notée θ_m .
- une transmission par roue et vis sans fin. Elle transforme la rotation de la vis, liée à l'arbre du moteur d'activation, en rotation de la roue porte satellites, de position angulaire θ_s . Le rapport de transmission est noté $\Delta\theta_s/\Delta\theta_m=C$.
- une transmission épicycloidale intégrée. Elle combine linéairement les rotations de la roue porte satellites (θ_s) et du pignon (θ_p) pour engendrer la rotation θ_c de la chemise du bloc de distribution telle que $\theta_c \theta_p = K \theta_s$.
- un index mécanique à commande électrique U_i . En l'absence de tension, il permet de bloquer l'arbre moteur en position.
- une unité de commande électronique (ECU). Elle élabore toutes les 10 ms les commandes électriques à destination du moteur d'activation et de l'index. Elle dispose pour cela des informations représentatives des conditions d'évolution du véhicule également utilisées pour le dispositif ESP de contrôle du freinage (angle de braquage, accélération transverse, composante verticale de la vitesse angulaire du véhicule). Cette unité gère également le système d'assistance variable Servotronic 2.

Question préliminaire : architecture de la direction

- *A1) Etablir la liste des actionneurs, des pré-actionneurs et des capteurs de la direction active à assistance variable (AFS).
- *A2) Compléter les zones grises du schéma fonctionnel décrivant l'architecture de la direction active à assistance variable, figure R1 du document réponse.

B Etude de la direction à assistance variable

L'objectif de cette partie est d'analyser le fonctionnement de la fonction assistance variable de la direction en faisant ressortir les paramètres de conception et leur contribution à la performance finale. Pour cette partie, la direction ne comporte <u>pas de fonction d'activation</u>.

Conformément au diagramme FAST de la **Figure 3**, la direction à assistance variable doit assurer les fonctions élémentaires d'asservissement de position et de sensation d'effort variable.

B.1 Direction conventionnelle

Dans cette question, la direction est conventionnelle. Elle ne comporte donc aucun dispositif d'assistance ou d'activation.

*B1) Exprimer la démultiplication de direction *D* en fonction des rapports de transmission *A* et *B* tels que définis au paragraphe A. Dans la configuration de la **Figure 1** (position neutre où le bras de direction est perpendiculaire à l'ensemble bielle+crémaillère), on désire avoir *B* = 5 rad/m. Donner la longueur *l* du bras de direction. Préciser la valeur numérique de *D* pour *A* = 90 mm/tr. Dans la suite de l'étude on considèrera *B* constant et égal à cette valeur.

Si l'on néglige les pertes énergétiques, la puissance développée par la direction sur les roues est égale à la puissance développée par le conducteur sur le volant.

- *B2) Compte tenu de cette remarque et du résultat de la question précédente, donner la relation liant le moment M_v développé par le conducteur selon l'axe du volant et le moment total M_r développé par la direction sur les roues selon l'axe de pivot de direction.
- *B3) Pour la valeur de *D* calculée précédemment, quel moment faut-il exercer sur le volant pour engendrer sur les roues un moment de braquage de 150 Nm, situation courante en manœuvre sur un sol peint (parking souterrain par exemple)?

B.2 Fonction asservissement de position (Ft2)

On suppose désormais que la direction est dotée d'un dispositif d'assistance variable opérationnel, **Figure 2**.

La direction assistée réalise un asservissement de position du piston d'assistance en fonction de la consigne de position imposée par le conducteur sous la forme d'un angle de volant. En l'absence de panne de la fonction d'assistance, le pignon fait partie de la chaîne de retour. Il est donc considéré comme entraîné par la crémaillère.

Comme le montre la **Figure 4**, le bloc hydraulique comporte un distributeur hydraulique rotatif constitué d'un tiroir (de rotation identique à celle du volant) et d'une chemise elle-même mobile en rotation. Dans la direction assistée sans activation, la chemise est solidaire du pignon. Par cette conception, l'écart entre la position angulaire θ_{ν} du volant et la position angulaire θ_{p} du pignon

produit l'ouverture du distributeur hydraulique dont la caractéristique statique linéarisée est décrite par l'équation $Q + k_2 \Delta P = k_1 \quad (\theta_v - \theta_p) = k_1 \quad \epsilon$.

```
où Q débit volumique émis vers le vérin d'assistance (m³/s) pression différentielle régnant dans le vérin d'assistance (Pa) k_1 gain débit-ouverture (m³/s.rad) k_2 gain débit-pression (m³/s.Pa) \epsilon = (\theta_v - \theta_p) écart de position angulaire (rad)
```

On rappelle que l'effort F et la vitesse V développés par le vérin (de section utile S) sont donnés par $F = S\Delta P$ et V = Q/S.

*B4) Donner le contenu des blocs 1 à 4 de la Figure 3.

B.2.1 Modélisation

Pour l'étude simplifiée de l'asservissement, on peut admettre en première approximation que k_2 est un facteur parasite qui influence peu la fonction. Il est donc justifié de considérer que $k_2 = 0$. Dans ce cas, la modélisation de l'asservissement permet d'élaborer son schéma-bloc comme indiqué sur la **Figure 5**. Il apparaît qu'après simplification et modification, ce schéma-bloc peut être mis sous la forme de la figure R2 du document réponse où θ_r^* est l'image du braquage de roues demandé par le conducteur.

- *B5) Donner le contenu des blocs du schéma-bloc sur la figure R2 du document réponse.
- *B6) Déterminer les fonctions de transfert $H(p) = \theta_r(p)/\theta_r^*(p)$ puis $G(p) = \theta_r(p)/\theta_v(p)$. On précisera les paramètres canoniques de ces fonctions (gains, constantes de temps, etc.) et on donnera leur expression en fonction des paramètres k_1 , S, A et B.

B.2.2 Analyse

Fonctions de transfert

- *B7) A quoi se réduit G(p) aux basses fréquences ou en statique ? Que vaut alors la démultiplication de direction D ? Comparer à la valeur obtenue à la question B1.
- *B8) Quel est l'effet sur D de l'introduction d'un rapport de transmission variable entre θ_p et θ_c , comme réalisé sur la direction active ?

On s'intéresse désormais au transfert H(p) liant $\theta_r^*(p)$ et $\theta_r(p)$.

Précision dynamique

B9) Donner l'expression de l'erreur de traînage $e_v(p) = \theta_r^(p) - \theta_r(p)$ lorsque le conducteur tourne le volant à vitesse constante, provoquant une rampe en θ_r^* de pente a ($\theta_r^*(p) = a/p^2$). En déduire la condition que doivent vérifier les paramètres k_1 , S et A pour que cette erreur soit inférieure à 1° pour a = 18°/s.

<u>Rapidité</u>

- *B10) D'après l'expression de H(p) et les valeurs obtenues à la question B9, donner l'expression puis la valeur numérique du temps de réponse à \pm 5% de la valeur finale de l'asservissement de position. Indiquer sa bande passante à -3dB.
- *B11) D'après l'expression de H(p) et les valeurs obtenues à la question B9, quels seraient l'atténuation et le déphasage en régime forcé entre θ_r^* et θ_r pour une conduite sur route sinueuse, telle que θ_r^* pourrait être assimilé à une fonction sinusoïdale de fréquence 1 Hz?

Stabilité

*B12) A la vue de la fonction de transfert H(p), la stabilité de l'asservissement de position est-elle affectée par l'augmentation du gain de boucle k_1/AS ? Ce résultat est-il vraisemblable? Que se passe-t-il en pratique?

B.3 Fonction sensation d'effort (Ft3)

La direction est toujours dotée d'un dispositif d'assistance variable opérationnel. On suppose désormais que le véhicule est en virage et que les angles de volant et de braquage sont <u>constants</u> $(\dot{\theta}_p = \dot{\theta}_v = 0)$. Le paramètre k_2 , contribuant fonctionnellement à ce mode, ne peut plus être considéré comme nul.

En pratique, il est nécessaire de restituer au conducteur une sensation d'effort lorsqu'il manœuvre le volant. C'est pourquoi on lie l'arbre volant à l'arbre pignon par un ressort de torsion de raideur R. Dans ce cas, le moment développé par le conducteur sur le pignon (selon son axe de rotation) est donné par $M_{\nu} = R(\theta_{\nu} - \theta_{p}) = R \varepsilon$. Un dispositif interne au bloc de direction, non représenté sur la figure 4, permet de moduler le taux d'assistance par l'intermédiaire d'un piston de modulation qui modifie la longueur active du ressort de torsion. La position de ce piston est fixée par le courant que reçoit l'électrovanne de modulation.

*B13) Identifier les fonctions constituantes Ft31 et Ft32 de la Figure 3.

On s'intéresse dans un premier temps à la réalisation de la sensation d'effort.

On considère que la crémaillère est soumise à 3 efforts longitudinaux selon l'axe \vec{x} de la figure 2 (les efforts de frottement sont négligés) :

- effort hydrostatique F exercé par le vérin d'assistance, du même signe que celui de ΔP ,
- effort $-M_r$. B issu du contact pneu-route et transmis par les bras et les biellettes de direction,
- composante selon l'axe \vec{x} égale à M_v/A de l'effort engendré par le pignon.
- *B14) A partir de l'équilibre statique de la crémaillère et de la caractéristique hydraulique du distributeur, donner la relation liant M_v et M_r en fonction de A, B, R, S, k_1 et k_2 .
- *B15) En déduire l'expression du taux d'assistance T.
- *B16) A l'examen de ce résultat, quel est l'effet de R sur le taux d'assistance ?
- La **Figure 6.a** donne la caractéristique statique effective du distributeur lorsque l'angle volant θ_v et la position de crémaillère x sont constants (débit fourni au vérin nul : Q = 0).
- *B17) Quelle relation lie la pente de la courbe $\Delta P(\varepsilon)$ aux paramètres k_1 et k_2 ? Préciser la valeur numérique (en unités internationales) de cette pente lorsque $\Delta P = 20$ bar. On rappelle que 1 bar = 10^5 Pa.

On s'intéresse désormais à la modulation de la sensation d'effort.

- La **Figure 6.b** présente l'évolution de la pression ΔP en fonction du moment M_{ν} ressenti par le conducteur. C'est cette figure qui est utilisée par le constructeur automobile pour spécifier au fournisseur de la direction, l'évolution du taux d'assistance en fonction de la clientèle visée et des conditions d'évolution du véhicule.
- *B18) Quelle relation lie la pente de la courbe $\Delta P(M_v)$ aux paramètres k_1 , k_2 et R? Lorsque $\Delta P = 20$ bar, en déduire les 2 valeurs numériques de R à réaliser pour obtenir le taux d'assistance maximal ou minimal.

C Etude de la fonction d'activation

L'objectif de cette question est de montrer l'intérêt et le mode d'action de la fonction d'activation.

La fonction d'activation est essentiellement constituée d'un ensemble électromécanique asservi qui s'insère entre la chemise du bloc de distribution et le pignon. Comme le montre le diagramme FAST de la **Figure 3**, l'activation permet de satisfaire deux objectifs :

- <u>fonction de démultiplication variable</u>: moduler la démultiplication de direction en introduisant un rapport variable N entre l'angle de rotation θ_c de la chemise et l'angle de rotation θ_p du pignon ($N = \theta_p / \theta_c$).
- <u>fonction de stabilisation</u> : engendrer des braquages correctifs θ_b destinés à stabiliser le véhicule dans les situations dynamiques critiques (cf. partie D).

Fonction de la démultiplication variable

On cherche ici à étudier dans son principe comment est réalisée la variation du rapport de démultiplication.

*C1) Compléter la partie "transmission mécanique" du schéma bloc de la **Figure R3** du document réponse.

Afin de pouvoir modifier la démultiplication de direction, on désire réaliser la relation $\Delta\theta_c/\Delta\theta_p=N$ par la commande de la position angulaire θ_m .

- *C2) On considère pour l'instant que $\theta_m = \theta_m^*$ sur la **Figure R3**. Compte-tenu du résultat précédent et de l'expression de la relation N, donner la relation liant l'angle θ_m^* à l'angle θ_p en fonction de K, C et N. Pour une valeur maximale de $\dot{\theta}_p$ de 270 °/s, donner les valeurs extrêmes de la vitesse de rotation à demander $\dot{\theta}_m^*$ pour que l'on puisse réaliser 0.7 < N < 1.3 (soit une variation de \pm 30% de la démultiplication de direction D). On prendra C = 0.01 et K = 0.5. Les valeurs seront données en unités SI puis en tr/mn.
- *C3) Quel est l'intérêt de la transmission par roue et vis sans fin ? Que se passe-t-il en cas de panne de la fonction d'activation lorsque l'arbre moteur est bloqué par l'index électromagnétique ?

Suite au résultat de la question C2 et afin de réaliser la position angulaire θ_m désirée, le moteur d'activation est asservi en position à la consigne θ_m^* élaborée à partir de l'angle θ_p . Le moteur électrique d'activation est assimilé à un moteur à courant continu à flux inducteur constant et à commande par tension d'induit U_m . Son comportement dynamique est caractérisé par l'équation

$$\tau \frac{d^2 \theta_m}{dt^2} + \frac{d \theta_m}{dt} = K_m U_m$$

avec U_m tension d'induit (V)

τ constante de temps du moteur (s)

 K_m constante électromagnétique du moteur (V.s/rad ou N.m/A)

La tension d'induit U_m du moteur est quant à elle élaborée par l'ECU selon l'équation :

$$U_m = K_A \left[(\theta_m^* - \theta_m) + k_3 \right]$$

avec K_A gain global de commande (V/rad)

 k_3 angle de correction (rad)

*C4) Compléter la partie "moteur d'activation" du schéma-bloc de la **Figure R3** du document réponse.

On s'intéresse désormais à l'asservissement de l'angle θ_m à la consigne θ_m^* en l'absence d'ordre de stabilisation k_3 (bloc « moteur d'activation » seul).

- *C5) Former la fonction de transfert en boucle ouverte $\theta_m(p)/(\theta_m^*(p) \theta_m(p))$. En déduire la fonction de transfert en boucle fermée $\theta_m(p)/\theta_m^*(p)$.
- *C6) Donner le gain statique, le coefficient d'amortissement et la pulsation propre de $\theta_m(p)/\theta_m^*(p)$.
- *C7) Donner les expressions puis les valeurs à spécifier pour le produit K_AK_m et pour τ afin que cet asservissement présente un coefficient d'amortissement réduit de 1 et une fréquence propre non amortie de 5 Hz.

D Fonction de stabilisation

On cherche ici à mettre en évidence l'effet d'un braquage correctif sur la stabilité du véhicule : détermination du lacet par l'ensemble capteurs-calculateur, intérêt et limite d'un braquage correctif.

Le véhicule, schématisé sur l'**Image 4**, de type traction (les roues avants sont motrices) décrit un arc de cercle, de rayon constant $OG = \rho$, sur une route horizontale dans le plan $(O; x_0, y_0)$. Le tangage (rotation du véhicule $/Gx_1$) et le roulis (rotation du véhicule $/Gy_1$) seront considérés comme nuls. Les résistances passives (frottement des liaisons, efforts aérodynamiques...) ainsi que l'inertie des éléments de transmission seront négligées.

L'accélération de la pesanteur \vec{g} est telle que $\vec{g} = -g \vec{z}$. $\mathcal{R}\left(O; x_0, y_0, z\right)$ sera considéré comme un repère galiléen (On prendra g=10 m.s⁻²).

Ce véhicule est composé :

- du châssis 1 auquel est associé le repère $(G; x_1, y_1, z)$, assimilé à un solide de centre d'inertie G, de masse m, dont l'inertie autour de l'axe $G\vec{z}$ s'écrit I_{Gz} . Les paramètres de position sont :
 - \triangleright l'angle α , qui caractérise la position du centre d'inertie G du véhicule
 - \triangleright l'angle β (angle de lacet), qui caractérise l'orientation du véhicule lorsqu'il est en situation critique.
 - $\beta > 0$ Situation critique de sur-virage, perte d'adhérence du train arrière
 - β <0 Situation critique de sous-virage, perte d'adhérence du train avant
 - $\beta = 0$ Situation théorique idéale, pas de dérive

- d'une roue avant droite 2 (voir détail roue 2 sur l'image 4) de rayon *r* assimilée à un solide sans masse, d'inertie négligeable.
 - en liaison pivot sans frottement par rapport au bras de direction BS_2 d'axe $O_2\vec{x}_{b2}$ caractérisé par le paramètre φ_2 . Le bras de direction BS_2 , assimilé à un solide sans masse, d'inertie négligeable, est lui même en liaison pivot sans frottement par rapport au châssis 1 d'axe $A_2\vec{z}$ caractérisé par le paramètre θ_2 .
 - en contact ponctuel avec frottement en I_2 avec le sol \emptyset . Dans ce modèle simplifié, les points I_2, O_2 et A_2 sont alignés suivant la direction z et $O_2A_2 = h$.
- d'une roue avant gauche 3 de rayon r assimilée à un solide sans masse, d'inertie négligeable.
 - en liaison pivot sans frottement par rapport au bras de direction BS_3 d'axe $O_3\vec{x}_3$ caractérisé par le paramètre φ_3 . Le bras de direction BS_3 , assimilé à un solide sans masse, d'inertie négligeable, est lui-même en liaison pivot sans frottement par rapport au châssis 1 d'axe $A_3\vec{z}$ caractérisé par le paramètre θ_3 .
 - en contact ponctuel avec frottement en I_3 avec le sol \emptyset
- des roues arrières gauche 4 et droite 5, de rayon *r* assimilées à des solides sans masse, d'inertie négligeable.
 - en liaison pivot sans frottement directement par rapport au châssis 1 d'axe $O_5\vec{x}_1$ caractérisé respectivement par le paramètre φ_4 et φ_5 ,
 - en contact ponctuel avec frottement respectivement en I_4 et I_5 avec le sol \emptyset .

Détermination de la dérive du véhicule

Le calculateur compare l'accélération latérale théorique calculée : a_x théorique (correspondant au comportement théorique du véhicule) à l'accélération latérale réelle mesurée : a_x réel (correspondant au comportement réel du véhicule). Le travail abordé dans cette question est destiné à déterminer ces grandeurs à partir des informations issues des capteurs embarqués sur le véhicule.

Conditions d'étude : on suppose d'abord le véhicule en situation théorique idéale. On considère que le centre de gravité G du véhicule de masse m décrit une trajectoire <u>circulaire théorique</u> de rayon ρ (dans ce cas $\beta = 0$, $\dot{\beta} = 0$ et les repères $\mathcal{R}_G \left(G; x_G, y_G, z \right)$, $\mathcal{R}_1 \left(x_1, y_1, z \right)$ sont confondus).

Les dimensions du véhicule sont données sur la Figure 7.

- *D1) Déterminer l'expression de la vitesse du point G par rapport au sol \varnothing , notée $\vec{V}_{G,1/0}$, en projection sur la base $\mathcal{B}_G\left(x_G,y_G,z\right)$.
- *D2) Déterminer l'expression de l'accélération du point G par rapport au sol \varnothing , notée $\vec{a}_{G,1/0}$, en projection sur la base $\mathcal{B}_G \left(x_G, y_G, z \right)$.
- *D3) On pose $\vec{a}_{G,1/0} = a_x \vec{x}_G + a_y \vec{y}_G$ avec a_x l'accélération latérale et a_y l'accélération longitudinale (par référence à la trajectoire idéale) du véhicule. Donner l'expression littérale de a_x en fonction de v et de ρ où v = mesure algébrique du vecteur $\vec{V}_{G,1/0}$.

Afin d'évaluer l'accélération latérale idéale a_x , le calculateur doit donc déterminer le rayon ρ de la trajectoire théorique à partir des informations "angle de braquage" et "vitesse du véhicule".

On s'intéresse plus particulièrement à la cinématique de la roue Avant Droite 2.

- *D4) Déterminer précisément l'expression de la vitesse du point I_2 appartenant à la roue 2 par rapport au sol \varnothing , notée $\vec{V}_{I_2,2/0}$, en projection sur la base $\mathcal{B}_1(x_1,y_1,z)$. On remarquera que $\vec{V}_{O_2,2/0} = \vec{V}_{A_2,1/0}$. En déduire les deux conditions scalaires de non glissement de la roue 2 par rapport au sol \varnothing .
- *D5) Montrer que si les conditions de non glissement de la roue 2 par rapport au sol \varnothing sont respectées, alors la vitesse $\vec{V}_{A_2,1/0}$ est portée par le vecteur $A_2\vec{y}_{b2}$ identifiant l'angle de braquage. On considèrera dans la suite, qu'il en est de même pour les roues 3, 4 et 5.
- *D6) La **Figure R4** du document réponse représente le véhicule en vue du dessus. Le capteur "Angle de braquage" donne l'orientation θ_2 de la roue avant droite 2. En considérant que toutes les roues roulent sans glisser par rapport au sol \emptyset , déterminer graphiquement le Centre Instantané de Rotation I_{10} du châssis 1 dans son mouvement par rapport au sol \emptyset . En déduire l'orientation θ_3 de la roue avant gauche 3.
- *D7) Etablir la relation donnant le rayon ρ^* en fonction de θ_2 , L et E en considérant que $\rho^* = I_{10}A_4 + E$. En déduire l'angle de braquage de la roue intérieure θ_3 réalisé par la cinématique de direction.

En comparant $a_{x \, r\acute{e}el}$ mesurée et $a_{x \, th\acute{e}orique}$ calculée, le calculateur détecte ainsi une situation critique validée par le capteur d'angle de lacet ($\beta \neq 0$). Le système lance alors une phase de correction de trajectoire.

D8) Application numérique : Pour $\theta_2 = 3.32^{\circ}$, calculer les valeurs numériques du rayon ρ^ et de l'angle de braquage θ_3 . Remarques sur la valeur de ces angles.

Correction de trajectoire

Si les mesures indiquent que le véhicule présente un comportement de sous-virage ou de sur-virage prononcé, le calculateur agit sur cette trajectoire en ordonnant à la direction AFS des braquages correctifs. On cherche ci-après à mettre en évidence le mode d'action du braquage correctif sur l'angle de lacet du véhicule.

Conditions d'étude :

Le véhicule est en virage à gauche, comme indiqué sur l'**Image 4**. On rappelle que seul le châssis 1 est assimilé à un solide de masse m dont l'inertie autour de l'axe $G\overline{z}$ s'écrit I_{Gz} , les autres solides étant considérés sans masse et d'inertie négligeable. Dans cette phase de correction, on peut considérer que l'accélération angulaire $\ddot{\alpha}$ est négligeable devant $\ddot{\beta}$. On prendra dans la suite de l'étude : $\ddot{\alpha}=0$.

Le modèle simplifié des actions de contact du sol \emptyset sur les roues avant 2 et 3 **Image 5.a**, est de la forme :

$$\begin{bmatrix} F_{\varnothing \to 2} \end{bmatrix} = \begin{bmatrix} T_{2X} & 0 \\ T_{2Y} & 0 \\ N_2 & 0 \end{bmatrix}_{I_2, \mathcal{B}_{b2}} \text{ avec } \mathcal{B}_{b2} \left(x_{b2}, y_{b2}, z \right) \text{ et } \begin{bmatrix} F_{\varnothing \to 3} \end{bmatrix} = \begin{bmatrix} T_{3X} & 0 \\ T_{3Y} & 0 \\ N_3 & 0 \end{bmatrix}_{I_3, \mathcal{B}_{b3}} \text{ avec } \mathcal{B}_{b3} \left(x_{b3}, y_{b3}, z \right)$$

avec:

 T_{iX} : composante tangentielle latérale de l'action du sol sur la roue i

 T_{iY} : composante tangentielle longitudinale de l'action du sol sur la roue i

 N_i : composante normale de l'action du sol sur la roue i.

Les roues arrières n'étant pas directionnelles, le modèle des actions de contact se réduit à :

$$\begin{bmatrix} F_{\varnothing \to 4} \end{bmatrix} = \begin{bmatrix} T_{4X} & 0 \\ T_{4Y} & 0 \\ N_4 & 0 \end{bmatrix}_{I_4,\mathcal{B}_1} \begin{bmatrix} F_{\varnothing \to 5} \end{bmatrix} = \begin{bmatrix} T_{5X} & 0 \\ T_{5Y} & 0 \\ N_5 & 0 \end{bmatrix}_{I_3,\mathcal{B}_1} \text{ avec } \mathcal{B}_1(x_1, y_1, z)$$

- *D9) Dans le cas où le couple moteur sur la roue 2 est nul, appliquer le théorème du moment dynamique à la roue 2 en projection sur l'axe $O_2\vec{x}_2$. Quelle est la valeur de la composante tangentielle longitudinale de l'action du sol sur la roue 2 : T_{2Y} ? Quelles seraient les valeurs des autres composantes T_{3Y} , T_{4Y} , T_{5Y} si les roues n'étaient ni motrices, ni sollicitées en freinage?
- *D10) Déterminer l'expression du torseur dynamique, réduit au centre de masse G, du système matériel $S = \{1, 2, BS_2, 3, BS_3, 4, 5\}$ dans son mouvement par rapport au sol \emptyset en projection sur la base $\mathcal{B}_1(x_1, y_1, z)$.
- *D11) Dans le cas où les composantes $T_{iY} = 0$ pour i = 1, 2, 3 et 4, appliquer en G, le principe fondamental de la dynamique au système matériel $S = \{1, 2, BS_2, 3, BS_3, 4, 5\}$ dans son mouvement par rapport au sol \emptyset en projection sur la base $\mathcal{B}_1(x_1, y_1, z)$. On n'écrira seulement que les équations de résultante que l'on numérotera 1, 2, 3 et l'équation de moment autour de l'axe $G\overline{z}$ que l'on numérotera 6.

*D12) Dans le cas où:

- on se situe à la limite de l'adhérence latérale : condition qui se traduit, dans le modèle de Coulomb par les équations $\mu_{lat} = \frac{-T_{2X}}{N_2} = \frac{-T_{3X}}{N_3} = \frac{-T_{4X}}{N_4} = \frac{-T_{5X}}{N_5}$,
- on se situe au moment où le dérapage s'amorce : $\beta=0$,
- on néglige les angles de braquage : $\theta_2 = \theta_3 = 0$,

calculer le module de l'accélération maximale latérale admissible $|a_{xMAX}| = \rho \dot{\alpha}^2$.

Application numérique : μ_{lat} =0,6. En déduire le rayon de courbure de la trajectoire si le centre de gravité du véhicule G est animé d'une vitesse de 130 km/h.

Création du moment de lacet M_z

On cherche ici à mettre en évidence l'effet, l'intérêt et la limite d'un braquage correctif sur la stabilité du véhicule.

Une part de la mise au point des automobiles provient de la connaissance des caractéristiques non linéaires des pneumatiques. Pour un pneumatique, la composante T_{iX} varie en fonction de l'angle de dérive δ (angle entre le vecteur vitesse du centre du pneu et le plan de la jante). Selon l'**Image 5.b**, cet effort décrit tout d'abord une portion linéaire, dont la pente est appelée rigidité de dérive. Après avoir atteint un maximum, l'effort décroît et tend vers une valeur limite.

*D13) Dans le cas où le centre de gravité du véhicule G est animé d'une vitesse de 130 Km/h et d'une accélération latérale a_x =0,6 g, évaluer les contributions sur la vitesse du point A_2 :

$$\left| \vec{V}_{A_2,1/\varnothing} \right|$$
:

- de la vitesse du point G : $\left| \vec{V}_{G,1/\varnothing} \right|$ et
- de la rotation du véhicule autour de G : $\left|\vec{\Omega}_{1/\varnothing} \wedge G\vec{A}_2\right|$

pour un taux de rotation $\dot{\alpha} = \dot{\beta}$.

En déduire que la vitesse du point $A_2: \left| \vec{V}_{A_2,1/\varnothing} \right|$ peut être assimilée au début de la phase de dérapage par un vecteur porté par $\vec{y}_G = \vec{y}_1$.

*D14) Dans le cas où:

- le véhicule est en phase de sur-virage : $\beta > 0$,
- les angles de braquage θ_2 et θ_3 sont faibles (on se situe sur la portion linéaire de la courbe),

montrer que, si les composantes T_{iX} pour i=1, 2, 3 et 4 sont de même signe (même caractéristique de glissement pour les quatre roues), alors elles sont portées par l'axe $-\vec{x}_1$.

Comment faire varier la composante tangentielle latérale T_{iX} sur les roues avant pour diminuer l'angle β ? Comment faut-il agir en conséquence sur δ et donc sur θ ?

Le candidat pourra s'appuyer sur un schéma simplifié pour illustrer son raisonnement.

- *D15) Au delà d'un angle de dérive de 30°:
 - La variation de l'angle de braquage θ_2 permet-elle d'assurer un contrôle du véhicule en lacet ?
 - Dans cette situation, le dispositif de freinage ESP ordonne le freinage de cette roue. Expliquer comment cette action peut contribuer à la réduction du sur-virage.

Fin de l'énoncé

DOSSIER TECHNIQUE

Direction active à assistance variable



Image 1. Direction active à assistance variable, objet de l'étude

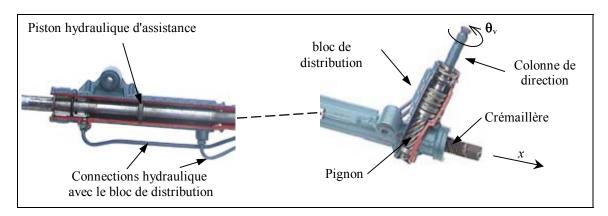


Image 2. Direction à assistance variable "Servotronic"

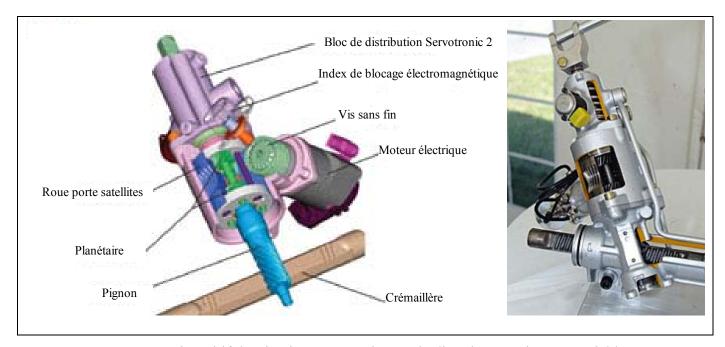


Image 3. Dispositif d'activation "AFS", ajouté à la direction à assistance variable

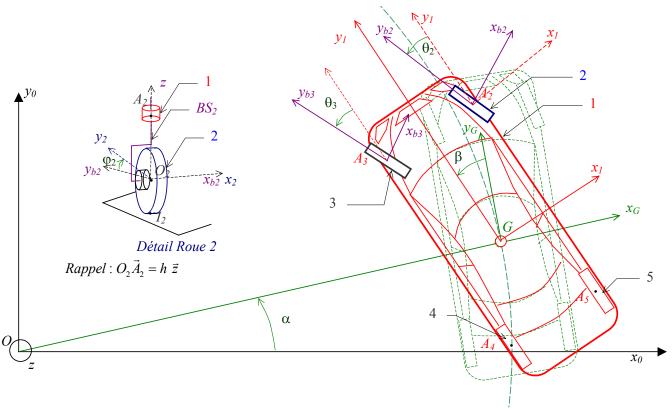


Image 4. Vue en plan d'un véhicule en situation de sur-virage

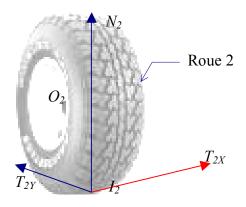
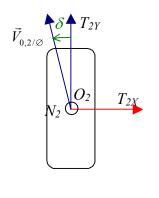
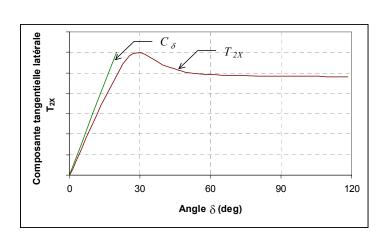




Image 5.a. Actions de contact sol/pneumatique

Image 5.b Effort *Tx* en fonction de l'angle de dérive

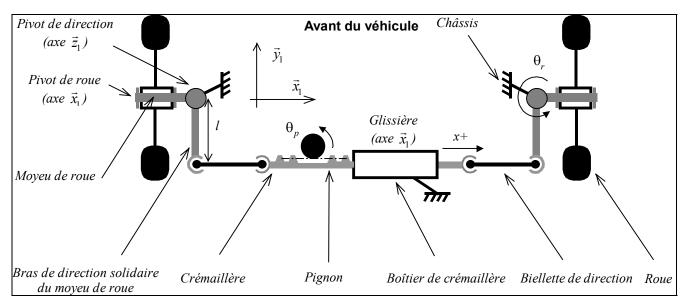


Figure 1. Direction d'un véhicule (en vue de dessus)

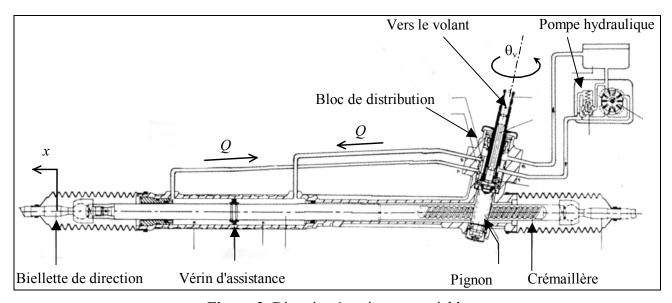


Figure 2. Direction à assistance variable

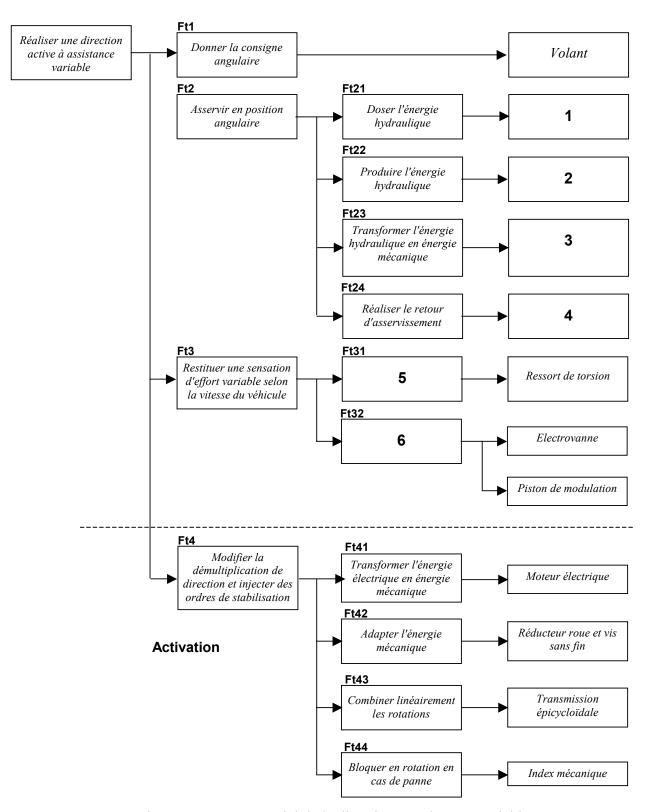


Figure 3. Diagramme FAST partiel de la direction à assistance variable

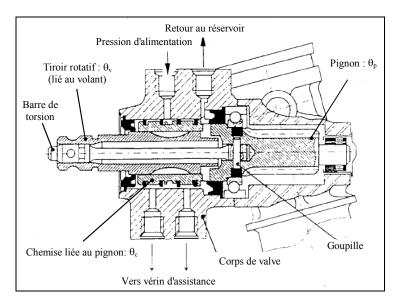


Figure 4. Bloc de distribution (ou valve) de direction assistée

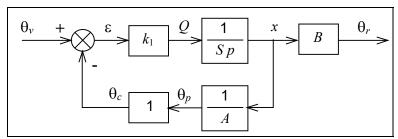


Figure 5. Schéma-bloc de la fonction asservissement de position

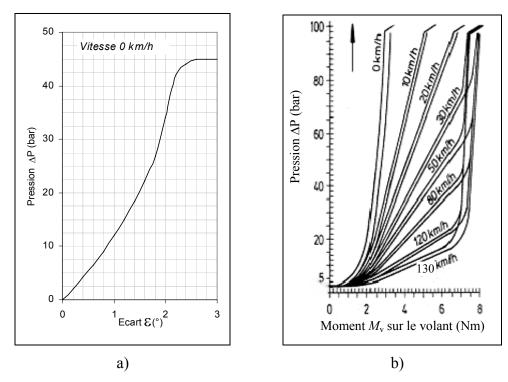


Figure 6. Caractéristiques d'assistance d'une direction "Servotronic"

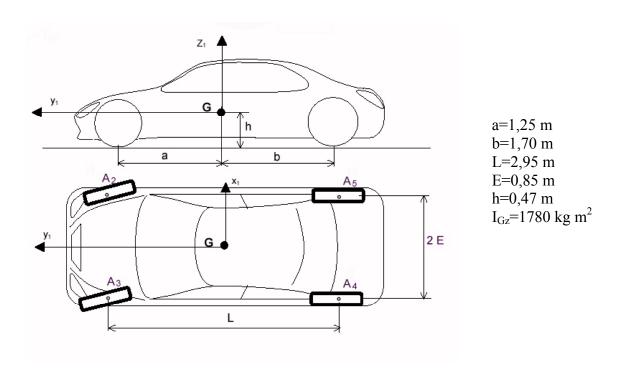


Figure 7. Caractéristiques du véhicule

DOCUMENT REPONSE – A RENDRE AVEC LA COPIE

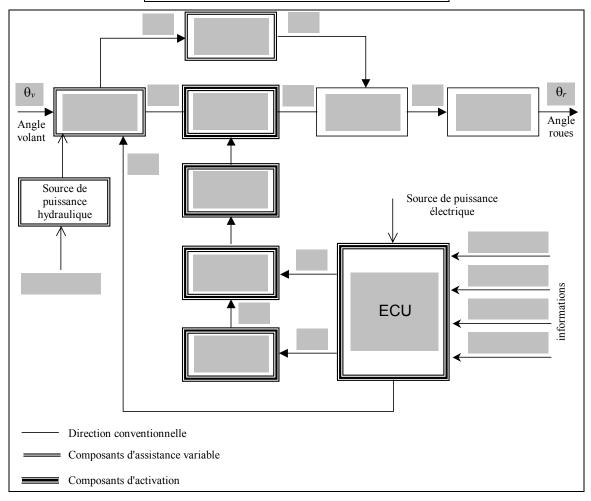


Figure R1. Architecture de la direction assistée active

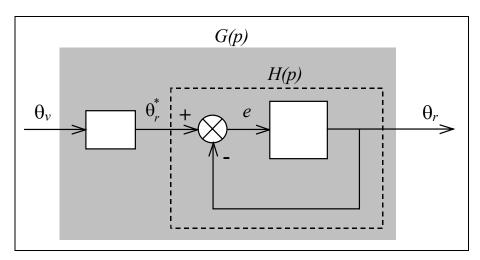


Figure R2. Schéma bloc de la fonction asservissement de position

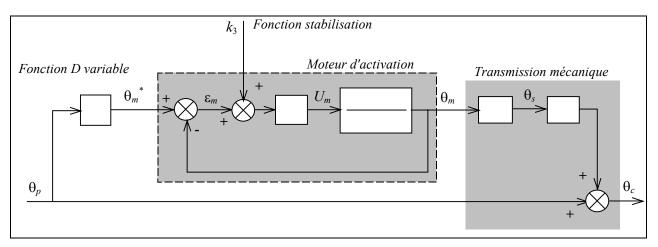


Figure R3. Schéma bloc du dispositif d'activation

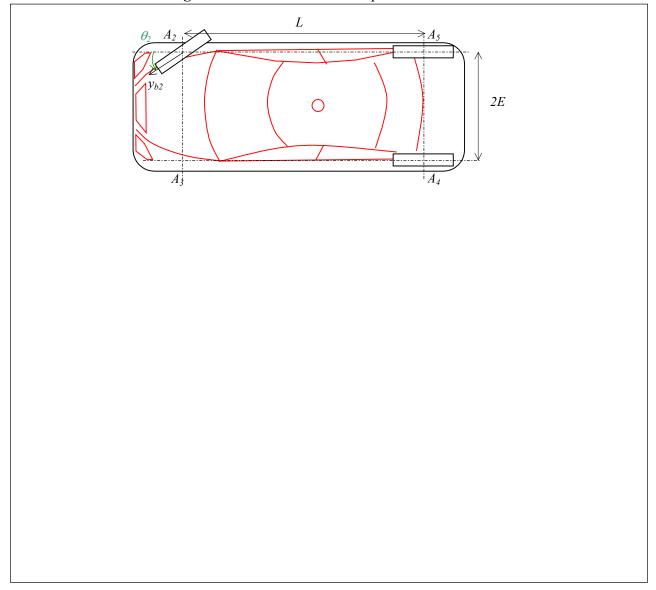


Figure R4. Détermination du CIR du véhicule