MATHÉMATIQUES

Problème

L'épreuve est constituée de trois parties, et propose l'étude de quelques propriétés de la fonction J_0 de Bessel (utilisée notamment en physique).

Partie I

Étude de la fonction $J = J_0$ de Bessel. Développement en série entière

ø1 Pour tout $x \in \ \ ;$, on pose : $J(x) = [1/(\pi)] \int_0^\pi \cos(x.\sin(\theta)) \ d\theta.$

(a) Montrer que pour tout $x \in []$, on a :

(b) Montrer que la fonction $J: j \to j$ ainsi définie est continue, paire et de classe C^2 sur j.

- (c) Justifier que J est bornée sur ; .
- (d) Justifier l'encadrement :

$$\forall \theta \in [0, \quad \frac{\pi}{2}], \qquad \frac{2\theta}{\pi}$$
 \mathrel6sin(\theta) \le \theta.

En déduire un encadrement de J(x) pour $x \in [0,2]$.

(e) Préciser les valeurs de J(0), J'(0). Montrer que J est strictement décroissante sur $[0,\pi]$.

 \emptyset 2 Pour tout $n \in \mathbb{Y}$, on pose : $I_n = \int_0^{[(\pi)/2]} \sin^{2n}(\theta) d\theta$.

- (a) Justifier que pour tout $n \in Y$: $(2n+1) I_n = 2(n+1) I_{n+1}$.
- (b) En déduire que pour tout $n \in \mathbb{Y}$: $I_n = [((2n)!\pi)/((n!)^22^{2n+1})] \setminus (n!)^2 + (n!)$

 $\emptyset 3$ (a) Rappeler le développement en série entière de la fonction cos et son rayon de convergence. En déduire que pour tout $\theta \in \mathcal{V}$ fixé, l'application $x \rightarrow \cos(x.\sin(\theta))$ est développable en série entière sur \mathcal{V} , et préciser ce développement.

(b) En déduire que J est développable en série entière sur ; , avec :

$$\forall x \in \text{; }, \quad J(x) = \qquad \qquad +\infty < !--\sigma \upsilon \pi --> \sum \qquad \qquad (-1)^n \\ n = 0 \qquad \qquad 4^n (n!)^2$$

(on précisera le théorème du cours utilisé pour l'intégration terme à terme).

Les deux parties suivantes sont indépendantes.

Partie II

Étude d'une équation différentielle

ø4 Vérifier que :

$$\forall x \in \ ; \ , \qquad x \qquad \qquad \Big(\qquad \qquad J(x) + J''(x) \qquad \qquad \Big) \qquad \qquad + J'(x) = 0.$$

 \emptyset 5 Montrer que l'ensemble des applications de \dagger vers \dagger , développables en série entière sur \dagger et solutions sur \dagger de l'équation différentielle : xy''+y'+xy=0, est un espace vectoriel réel de dimension 1, engendré par J.

ø6 Soit K ∈ $C^2(;_+^*,;_)$, solution sur $;_+^*$ de l'équation différentielle : xy''+y'+xy=0.

Pour tout x > 0 on pose : W(x) = J'(x)K(x) - J(x)K'(x).

Montrer que $W \in C^1(_{i-}^*,_{i})$, et est telle que pour tout x > 0, on ait : $W'(x) = -\frac{1}{x}W(x)$.

En déduire la forme de W.

 \emptyset 7 Pour tout $n \in \mathbb{Y}^*$, on pose : $H_n = \sum_{k=1}^{n} \frac{1}{k} \cdot \frac{1}{k}$

- (a) Montrer que $\lim_{n\to+\infty}([(H_{n+1})/(H_n)])=1$.
- (b) Pour tout $x \in \ \ ;$, on pose : $\phi(x) = \sum_{n \ = \ 1}^{+\infty} [\ ((-1)^{n+1} H_n)/(4^n (n!)^2)] \ x^{2n}.$

Vérifier que le rayon de convergence de cette série entière est bien égal à $+\infty$. Pour tout réel x, expliciter (sous forme d'une série entière simple) la valeur de l'expression $x\phi''(x)+\phi'(x)+x\phi(x)$ et la comparer avec -2 J'(x).

(c) Pour tout
$$x > 0$$
, on pose : $K(x) = ln(x) J(x) + \varphi(x)$.

Vérifier que K est solution sur ; * de l'équation différentielle : x y"+y'+xy = 0, et expliciter la fonction W associée définie au ø6

Que peut-on en déduire ?

Partie III

Usage de la transformation de Laplace

 $\emptyset 8$ (a) Justifier que pour tout $n \in \mathbb{Y}$, et tout y > 0:

(**b**) Montrer que pour tout y > 0, on a :

(on pourra commencer par justifier l'existence de cette intégrale en utilisant par exemple le ø1 (c), puis le développement en série entière de J vu en ø3 (b) en précisant le théorème du cours utilisé pour l'intégration terme à terme).

ø9 (a) Justifier pour y > 0 l'existence de $L(y) = \int_0^{+\infty} e^{-xy} J(x) dx$.

 $\textbf{(b)} \ Montrer \ que \ la \ fonction \ L \ ainsi \ d\'efinie \ est \ une \ application \ continue \\ sur \]0,+\infty[\ v\'erifiant \ lim_{y\to +\infty}L(y)=0.$

ø10 (a) Déterminer et justifier le développement en série entière sur]−1,1[de la fonction $h: u \rightarrow [1/(\sqrt{1+u^2})] \setminus dotp$

 $(\textbf{b}) \text{ Utiliser le développement en série entière de J vu au } \emptyset 3 \textbf{ (b)} \text{ afin de } \\ \text{montrer que, pour tout } y \in]1,+\infty[, \\ L(y) = [1/(\sqrt{1+y^2})] \text{ cdotp} \\ \emptyset 11 \text{ Soit } y > 0 \text{ fixé}.$

(a) Pour tout $n \in Y^*$, on pose : $L_n(y) = \int_0^n e^{-xy} J(x) dx$. Montrer que :

(**b**) En remarquant que $[(\pi)/2]$ L_n(y) =

 $\Re \left(\int_0^{(\pi)/2} \left(\int_0^n e^{x(-y+i\sin(\theta))} dx \right) d\theta \right)$, montrer que :

(c) Montrer que:

(d) Par un passage à la limite, en déduire que, pour tout y > 0, on a :

(on pourra utiliser le changement de variable défini par `` $u = tan(\theta)$ ").