e 4 a

Concours ENSAM - ESTP - ENSAIS - ECRIN - ARCHIMEDE

Épreuve de Mathématiques 1 durée 4 heures

Les deuxième, troisième et quatrième parties sont liées et peuvent être traitées indépendamment de la première partie.

Notations:

Dans tout le problème n et k sont deux entiers naturels donnés de somme N. La fonction h de $\mathbb R$ dans $\mathbb R$ est définie par $h(x)=x^{n+k+1}$.

Soient f et g deux fonctions à valeurs réelles définies sur un intervalle I de $\mathbb R$ contenant 0; la fonction f est dominée par la fonction g au voisinage de 0 signifie qu'il existe deux réels strictement positifs M et α tels que :

$$\forall x \in I \cap]-\alpha, +\alpha[, |f(x)| \le M|g(x)|$$

 $\mathbb{R}_n[X]$ (resp $^{\underline{t}}$ $\mathbb{R}_k[X]$) désigne l'espace vectoriel des polynômes à coefficients réels, de degré inférieur ou égal à n (resp k).

 $\mathcal{F}_{n,k}$ est l'ensemble des fractions rationnelles défini par :

$$\mathcal{F}_{n,k} = \{ u = \frac{p}{q}, \ p \in \mathbb{R}_n[X], \ q \in \mathbb{R}_k[X], \ q(0) \neq 0 \}$$

Les coefficients de p (resp $^{\underline{t}}$ q) seront notés $\{a_0, a_1, \dots, a_n\}$ (resp $^{\underline{t}}$ $\{b_0, b_1, \dots, b_k\}$ où $b_0 \neq 0$)

Première partie:

Dans cette partie $b_0=1$. Soit f une fonction à valeurs réelles, égale à la somme de la série entière $\sum_{i=0}^{\infty} c_i x^i$, de rayon de convergence ρ strictement positif.

Il s'agit de rechercher un élément u de $\mathcal{F}_{n,k}$ tel que la fonction (f-u) soit dominée par la fonction h au voisinage de 0. La fonction u étant égale au quotient des deux polynômes p et q, la question consiste à déterminer, à partir des c_i , les coefficients $\{a_0, a_1, \ldots, a_n\}$ de p et les coefficients $\{b_1, b_2, \ldots, b_k\}$ de q de sorte que :

$$\forall j \in \{0, 1, \dots, N\}, \quad f^{(j)}(0) = u^{(j)}(0)$$

- 1) Montrer que cette condition équivaut au fait que le "numérateur" f(x)q(x)-p(x) de f(x)-u(x) n'admet aucun terme de degré inférieur ou égal à N dans son développement en série entière.
- 2)
- 2-1) Avec la convention que $c_i = 0$ pour i < 0, $a_i = 0$ pour i > n et $b_i = 0$ pour i > k, vérifier que le système (1) suivant permet d'obtenir les coefficients $\{a_0, a_1, \ldots, a_n\}$ et $\{b_1, b_2, \ldots, b_k\}$ de la fraction rationnelle u.

$$\forall i \in \{0, 1, \dots, N\}, \quad \sum_{j=0}^{j=i} b_j c_{i-j} = a_i$$
 (1)

2-1) Mette ce système sous la forme qui suit :

$$\begin{cases}
\sum_{\substack{j=0\\j=k\\\\j=0}}^{j=Min(i,k)}c_{i-j}b_j = a_i & i = 0, 1, \dots, n \\ \sum_{\substack{j=0\\j=0}}^{j=k}c_{n+i-j}b_j = 0 & i = 1, 2, \dots, k
\end{cases} (2)$$

3)

3-1) En tenant compte du fait que $b_0=1$, montrer que (3) détermine les coefficients $\{b_1,\ldots,b_k\}$ de manière unique si et seulement si la matrice carrée :

$$M_{n,k}(f) = \begin{bmatrix} c_{n+i-j} \end{bmatrix} \quad \underset{1 \le i \le k, 1 \le j \le k}{}$$

est inversible.

3-2) Vérifier que dans ces conditions les relations (2) donnent les coefficients $\{a_0, a_1, \ldots, a_n\}$.

La fonction u ainsi obtenue se notera $F_k^n(f)$.

- 3-3) Montrer que la fonction $(f F_k^n(f))$ est dominée par h au voisinage de 0.
 - 4) Dans cette question $f(x) = \ln(1+x)$, n = 2, k = 2.
- 4-1) Déterminer les coefficients $\{c_i, i \in \mathbb{N}\}$, le réel ρ et la matrice $M_{2,2}(f)$.
- 4-2) Déterminer alors la fonction $F_2^2(f)$.
- 4-3) Calculer exactement, $\sum_{j=0}^{j=4} c_j$ et $F_2^2(f)(1)$.
 - 5) Dans cette question $f(x) = e^{-x}$, n = 3, k = 2. Exprimer la matrice $M_{3,2}(f)$, déterminer p et la fonction $F_2^3(f)$.

Deuxième partie:

La fonction f_1 de \mathbb{R} dans \mathbb{R} est donnée par $f_1(x) = e^x$. Lorsque cela aura un sens, A(x) et B(x) seront définis par :

$$A(x) = \int_0^{+\infty} t^k (t+x)^n e^{-t} dt$$
 et $B(x) = \int_0^{+\infty} (t-x)^k t^n e^{-t} dt$

1) Question préliminaire :

Calculer $\beta(n,k) = \int_0^1 u^n (1-u)^k du$ et, pour tout entier naturel j, étudier

l'existence et indiquer la valeur éventuelle de $\int_0^{+\infty} t^j e^{-t} dt$.

2) Déterminer le développement de f_1 en série entière et étudier sa convergence. Soit S_k la somme partielle de rang k de ce développement. Exprimer $S_k(x)$.

Dans la suite de cette partie I = [-1, 1]

- 3) Montrer que A(x) et B(x) existent lorsque x est donné dans]-1, 1[.
- 4) Montrer que A (resp $^{\underline{t}}$ B) définit une fonction polynomiale sur I de degré n (resp $^{\underline{t}}$ k) et que $B(0) \neq 0$.

5) g est la fonction de] – 1, 1[dans \mathbb{R} définie par $g(x) = f_1(x)B(x) - A(x)$

5-1) Vérifier que
$$\forall x \in]-1, \ 1[, \quad g(x)=-\int_0^{-x} t^k (t+x)^n e^{-t} \, dt$$

5-2) En déduire que
$$\forall x \in]-1, 1[, g(x) = (-1)^k x^{n+k+1} \int_0^1 u^k (1-u)^n e^{ux} du$$

5-3) Montrer que la fonction g est dominée par la fonction h au voisinage de 0.

Troisième partie:

Dans cette partie, n = 0 et le réel x est fixé dans $[0 + \infty[$.

1) Vérifier que A(-x) et B(-x) existent. Calculer A(-x).

2) Montrer que

$$\frac{A(-x)}{B(-x)} = \frac{1}{S_k(x)}$$

3) Établir que

$$e^{-x} - \frac{A(-x)}{B(-x)} = \frac{-\int_0^x t^k e^{-t} dt}{\int_0^{+\infty} (t+x)^k e^{-t} dt}$$

4) En utilisant

$$2^{-k} \int_0^x (2t)^k e^{-t} dt \le 2^{-k} \int_0^x (t+x)^k e^{-t} dt$$

montrer que

$$\left| \frac{1}{f_1(x)} - \frac{1}{S_k(x)} \right| \le 2^{-k}$$

Quatrième partie:

Dans cette partie le réel x est fixé dans $[0 + \infty[$. En outre, les entiers naturels n et k vérifient k = 3n.

1) Montrer que

$$e^{-x} - \frac{A(-x)}{B(-x)} = \frac{-\int_0^x t^k (t-x)^n e^{-t} dt}{\int_0^{+\infty} (t+x)^k t^n e^{-t} dt}$$

2) Établir que $t(t+x)^3 = 27t^3(x-t) + t(x+7t)(x-2t)^2$ et en déduire que :

$$\left| \frac{1}{f_1(x)} - \frac{A(-x)}{B(-x)} \right| \le 3^{-k}$$