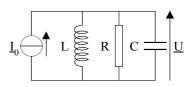
EPL - SESSION 1998 ÉNONCÉ

Questions liées.

[1,2,3,4,5,6,7] [8,9,10,11,12,13,14] [15,16,17,18,19,20,21] [22,23,24,25,26,27] [28,29,30]

Une source idéale de courant sinusoïdal de pulsation ω, dont la valeur efficace du courant électromoteur est I₀, alimente un circuit constitué d'une bobine de coefficient d'auto-inductance L, d'un résistor de résistance R et d'un condensateur de capacité C connectés en parallèle (cf. figure ci-contre). Calculer la puissance moyenne P fournie par la source de courant et montrer qu'elle passe par un maximum \mathcal{P}_{max} pour $\omega = \omega_0$ tel que :



a)
$$\omega_0 = \frac{1}{LC}$$

b)
$$\omega_0 = \frac{1}{\sqrt{LC}}$$

c)
$$\omega_0 = LC$$

d)
$$\omega_0 = \sqrt{LC}$$

2. Si l'on pose
$$x = \frac{\omega}{\omega_0}$$
 la puissance moyenne \mathcal{P} peut se mettre sous la forme $\mathcal{P} = \frac{\mathcal{P}_{\text{max}}}{1 + Q^2 \left(x - \frac{1}{x}\right)^2}$ à

condition que:

a)
$$\mathcal{P}_{\text{max}} = RI_0^2 \text{ et } Q = \frac{1}{RL\omega_0}$$

b)
$$\mathcal{P}_{\text{max}} = RI_0^2 \text{ et } Q = \frac{1}{RC\omega_0}$$

c)
$$\mathcal{P}_{\text{max}} = RI_0^2$$
 et $Q = RC \omega_0$

d)
$$\mathcal{P}_{\text{max}} = RI_0^2 \text{ et } Q = \frac{L\omega_0}{R}$$

La bande passante du circuit, $\Delta \omega = |\omega_1 - \omega_2|$, où ω_1 et ω_2 sont les pulsations pour lesquelles $\mathcal{P} = \frac{\mathcal{P}_{\text{max}}}{2}$ vaut :

a)
$$\Delta\omega = \frac{1}{Q}$$

a)
$$\Delta \omega = \frac{1}{Q}$$
 b) $\Delta \omega = \frac{Q}{\omega_0}$ c) $\Delta \omega = \omega_0 Q$ d) $\Delta \omega = \frac{\omega_0}{Q}$

c)
$$\Delta \omega = \omega_0 Q$$

d)
$$\Delta\omega = \frac{\omega_0}{Q}$$

La valeur maximale U_{max} de la tension U aux bornes du générateur est :

a)
$$U_{max} = RI_0$$

b)
$$U_{max} = QRI_0$$

c)
$$U_{\text{max}} = \frac{RI_0}{O}$$

c)
$$U_{\text{max}} = \frac{RI_0}{Q}$$
 d) $U_{\text{max}} = \frac{QRI_0}{\sqrt{4Q^2 - 1}}$

Le courant I_C qui circule dans le condensateur s'écrit :

a)
$$I_C = \frac{Q^2 I_0}{x \sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}$$

b)
$$I_C = \frac{QI_0}{x\sqrt{1+Q^2\left(x-\frac{1}{x}\right)^2}}$$

c)
$$I_C = \frac{x I_0}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}$$

d)
$$I_C = \frac{x QI_0}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}$$

6. Le courant I_C qui circule dans le condensateur passe par une valeur maximale I_{Cmax} pour :

a) Q >
$$\frac{1}{\sqrt{2}}$$
 et x = $\frac{Q\sqrt{2}}{\sqrt{2Q^2 - 1}}$

b)
$$Q < \sqrt{2}$$
 et $x = \frac{Q\sqrt{2}}{\sqrt{1 - 2Q^2}}$

EPL - SESSION 1998

c)
$$Q > \sqrt{2}$$
 et $x = \frac{1}{\sqrt{2Q^2 - 1}}$

d)
$$Q < \frac{1}{\sqrt{2}}$$
 et $x = \frac{Q}{\sqrt{1 - 2Q^2}}$

Le courant I_{Cmax} vaut :

a)
$$I_{C \text{ max}} = \frac{I_0 Q^2}{\sqrt{2Q^2 - 1}}$$

b)
$$I_{C \text{ max}} = \frac{2I_0Q}{\sqrt{2Q^2 - 1}}$$

c)
$$I_{\text{C max}} = \frac{2I_0Q^2}{\sqrt{4Q^2 - 1}}$$

d)
$$I_{C \text{ max}} = \frac{I_0 Q}{4Q^2 - 1}$$

On considère un système de trois lentilles minces L_1 , L_2 et L_3 , de centres optiques O_1 , O_2 et O_3 et de distances focales images respectives f1, f2 et f_3 . Les lentilles \mathcal{L}_1 et \mathcal{L}_2 sont divergentes. La lentille \mathcal{L}_3 est convergente.

On pose $a = \overline{O_1O_2}$ et $b = \overline{O_2O_3}$ (cf. figure ci-

Les distances a et b sont réglées de façon à ce qu'un faisceau cylindrique de rayon R₁ dont l'axe est l'axe

optique du système donne en sortie un faisceau cylindrique de même axe et de rayon R₂ > R₁. un tel système est :

b) Divergent

c) Convergent

d) Catadiotrique

 O_2

Pour que le système ait la propriété demandée, il faut que :

a) l'image donnée par L_2 du foyer objet de L_1 soit au foyer image de L_3

b) l'image donnée par L_3 du foyer image de L_2 soit au foyer image de L_1

c) l'image donnée par L_2 du foyer image de L_1 soit au foyer objet de L_3

d) l'image donnée par L_1 du foyer objet de L_2 soit au foyer objet de L_1

Déduire, de l'application de la relation de conjugaison de Descartes, une relation entre a, b, f₁, f₂ et f₃.

a)
$$\frac{1}{b-f_3} - \frac{1}{f_1 - a} = \frac{1}{f_2}$$

b)
$$\frac{1}{a-f_2} - \frac{1}{f_1 - b} = \frac{1}{f_3}$$

c)
$$-\frac{1}{b-f_1} + \frac{1}{b-f_2} = \frac{1}{f_2}$$

b)
$$\frac{1}{a-f_2} - \frac{1}{f_1-b} = \frac{1}{f_3}$$

d) $-\frac{1}{a-b} + \frac{1}{f_3-f_2} = \frac{1}{f_1}$

11. Exprimer, à l'aide de considérations géométriques simples sur le schéma de la figure ci-dessus, le

a)
$$\frac{R_2}{R_1} = -\frac{f_2}{f_3} \left(\frac{b - f_1}{f_3 - a} \right)$$

b)
$$\frac{R_2}{R_1} = -\frac{f_1}{f_2} \left(\frac{a - f_2}{f_1 - b} \right)$$

c)
$$\frac{R_2}{R_1} = -\frac{f_2}{f_1} \left(\frac{f_2 - f_1}{f_3 - f_1} \right)$$

d)
$$\frac{R_2}{R_1} = -\frac{f_3}{f_1} \left(\frac{f_1 - a}{f_3 - b} \right)$$

12. Déduire la valeur de a.

a)
$$a = f_3 + f_1 \left(1 + \frac{R_1 f_2}{R_2 f_3} \right)$$

b)
$$a = f_1 + f_2 \left(1 + \frac{R_2 f_1}{R_1 f_3} \right)$$

c)
$$a = f_1 + f_3 \left(1 + \frac{R_1 f_3}{R_2 f_1} \right)$$

d)
$$a = f_3 + f_2 \left(1 + \frac{R_2 f_2}{R_1 f_1} \right)$$

13. Déduire la valeur de b. PHYSIQUE - ÉNONCÉ

a)
$$b = f_3 + f_2 \left(1 + \frac{R_1 f_3}{R_2 f_1} \right)$$

b) $b = f_3 + f_1 \left(1 + \frac{R_2 f_2}{R_1 f_3} \right)$
c) $b = f_2 + f_3 \left(1 + \frac{R_1 f_1}{R_1 f_2} \right)$
d) $b = f_1 + f_2 \left(1 + \frac{R_2 f_2}{R_1 f_2} \right)$

14. On donne : $|f_1| = 20 \text{ mm}$, $|f_2| = 20 \text{ mm}$, $|f_3| = 200 \text{ mm}$, $R_2/R_1 = 20$. Calculer l'encombrement $d = \overline{O_1 O_3}$ du système.

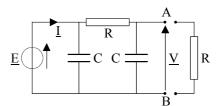
a)
$$d = 23 \text{ cm}$$

b)
$$d = 19 \text{ cm}$$

c)
$$d = 15 \text{ cm}$$

d)
$$d = 9 \text{ cm}$$

15. Un générateur de tension sinusoïdale, de force électromotrice d'amplitude complexe efficace Ε, de pulsation ω et de résistance interne négligeable, alimente un réseau constitué de deux condensateurs identiques de capacité C et d'un résistor de résistance R connectés suivant le schéma de la figure ci-



Déterminer les caractéristiques du générateur de Thévenin f.é.m. \underline{E}_{th} et impédance interne \underline{Z}_{th} - équivalent au circuit du point de vue des bornes A et B.

a)
$$\underline{E}_{th} = \frac{\underline{E}}{1 + 2jCR\omega}$$
 et $\underline{Z}_{th} = \frac{1}{jC\omega(1 + jCR\omega)}$ b) $\underline{E}_{th} = \frac{\underline{E}}{1 + jCR\omega}$ et $\underline{Z}_{th} = \frac{R}{1 + jCR\omega}$

b)
$$\underline{E}_{th} = \frac{\underline{E}}{1 + jCR\omega}$$
 et $\underline{Z}_{th} = \frac{R}{1 + jCR\omega}$

c)
$$\underline{E}_{th} = \frac{2jCR\omega\underline{E}}{1+jCR\omega}$$
 et $\underline{Z}_{th} = \frac{2R}{1+jCR\omega}$

c)
$$\underline{\underline{E}}_{th} = \frac{2jCR\omega\underline{\underline{E}}}{1+jCR\omega}$$
 et $\underline{\underline{Z}}_{th} = \frac{2R}{1+jCR\omega}$ d) $\underline{\underline{E}}_{th} = \frac{2\underline{\underline{E}}}{1+jCR\omega}$ et $\underline{\underline{Z}}_{th} = \frac{jR^2C\omega}{1+jCR\omega}$

En déduire la fonction de transfert $\underline{T}(j\omega) = \frac{\underline{V}}{E}$ ainsi que la pulsation de coupure ω_0 à 3 dB du filtre ainsi constitué dans le cas où aucune impédance ne charge le filtre.

a)
$$\underline{T}(j\omega) = \frac{1}{1 + jCR\omega}$$
 et $\omega_0 = \frac{1}{RC}$

b)
$$\underline{T}(j\omega) = \frac{1}{1 + 2jCR\omega}$$
 et $\omega_0 = \frac{1}{2RC}$

c)
$$\underline{\underline{T}}(j\omega) = \frac{jCR\omega}{1+2jCR\omega}$$
 et $\omega_0 = \frac{1}{\sqrt{2CR}}$ d) $\underline{\underline{T}}(j\omega) = \frac{jCR\omega}{1+jCR\omega}$ et $\omega_0 = \frac{1}{\sqrt{RC}}$

d)
$$\underline{T}(j\omega) = \frac{jCR\omega}{1+jCR\omega}$$
 et $\omega_0 = \frac{1}{\sqrt{RC}}$

Une résistance R est connectée entre les bornes A et B du circuit. Calculer la nouvelle fonction de transfert T'($j\omega$) ainsi que la nouvelle pulsation de coupure ω'_0 à 3 dB.

a)
$$\underline{\mathbf{T}}(j\omega) = \frac{1}{1 + 2jCR\omega}$$
 et $\omega'_0 = \frac{1}{2RC}$

b)
$$\underline{\mathbf{T}}(j\omega) = \frac{2}{2 + jCR\omega}$$
 et $\omega'_0 = \frac{1}{RC}$

c)
$$\underline{\underline{T'}}(j\omega) = \frac{2jCR\omega}{1+2jCR\omega}$$
 et $\omega'_0 = \frac{2}{\sqrt{CR}}$ d) $\underline{\underline{T'}}(j\omega) = \frac{1}{2+jCR\omega}$ et $\omega'_0 = \frac{2}{RC}$

d)
$$\underline{\mathbf{T}}(j\omega) = \frac{1}{2 + jCR\omega}$$
 et $\omega'_0 = \frac{2}{RC}$

18. Si on désigne par <u>I</u> l'amplitude complexe du courant débité par le générateur, exprimer l'impédance complexe d'entrée $\underline{Z}_e = \frac{\underline{E}}{\underline{I}}$ du filtre chargé en fonction de ω .

a)
$$\underline{Z}_e = \frac{R(2+jCR\omega)}{1-R^2C^2\omega^2+3jCR\omega}$$

b)
$$\underline{Z}_e = \frac{R(1+2jCR\omega)}{1+R^2C^2\omega^2+jCR\omega}$$

c)
$$\underline{Z}_e = \frac{R(1 + jCR\omega)}{1 + 2R^2C^2\omega^2 - 3jCR\omega}$$

d)
$$\underline{Z}_e = \frac{R(1+jCR\omega)}{1+3R^2C^2\omega^2 - jCR\omega}$$

19. Montrer que pour la valeur de ω égale à la pulsation de coupure ω'_0 , ce filtre est équivalent, du point de vue de l'impédance d'entrée, à un dipôle R₁C₁ série dont on calculera la résistance R₁ et la capacité C₁.

a)
$$R_1 = \frac{R}{3}$$
 et $C_1 = \frac{7C}{2}$

b)
$$R_1 = R$$
 et $C_1 = 2C$

c)
$$R_1 = \frac{3R}{8}$$
 et $C_1 = \frac{C}{4}$

d)
$$R_1 = \frac{2R}{15}$$
 et $C_1 = \frac{5C}{4}$

20. Le générateur est réglé sur la pulsation de coupure ω'_0 . Calculer la puissance moyenne \mathcal{P}_g fournie par le générateur au filtre.

a)
$$P_g = \frac{E^2}{R}$$

b)
$$P_{g} = \frac{3E^{2}}{4R}$$
 c) $P_{g} = \frac{E^{2}}{4R}$ d) $P_{g} = \frac{2E^{2}}{R}$

c)
$$P_g = \frac{E^2}{4R}$$

d)
$$P_g = \frac{2E^2}{R}$$

Calculer, dans les mêmes conditions, la puissance moyenne \mathcal{P}_u recueillie dans la résistance de charge R.

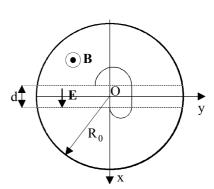
a)
$$\mathcal{P}_{u} = \frac{2E^2}{R}$$

b)
$$\mathcal{P}_{u} = \frac{E^2}{4R}$$

c)
$$P_u = \frac{E^2}{8R}$$

a)
$$\mathcal{P}_{u} = \frac{2E^{2}}{R}$$
 b) $\mathcal{P}_{u} = \frac{E^{2}}{4R}$ c) $\mathcal{P}_{u} = \frac{E^{2}}{4R}$

Dans un cyclotron, des protons non relativistes de masse m et de charge électrique q sont soumis à l'action conjuguée d'un champ électrique E et d'un champ magnétique B tous deux uniformes. Le champ magnétique, constant, est dirigé suivant l'axe Oz d'un repère $\mathcal{R}(O,x,y,z)$ et règne dans tout l'espace situé à l'intérieur d'un cylindre d'axe Oz et de rayon R₀. Le champ électrique, de forme $\mathbf{E} = \mathbf{E}_0 \cos (\omega_0 t) \mathbf{e}_x$, n'agit qu'à l'intérieur d'une zone de l'espace comprise entre deux plans parallèles symétriques par rapport au plan yOz et distants de d (cf. figure ci-contre). A l'instant t = 0 un proton se trouve en O avec une vitesse nulle.



Calculer l'augmentation d'énergie cinétique $\Delta \mathcal{E}_c$ de la particule à

chaque passage dans la zone où règne le champ électrique. On admettra que pendant tout le temps où le proton se trouve dans cette zone:

- ♦ le champ électrique a sa valeur maximale E₀ et reste sensiblement constant ;
- ♦ l'action du champ magnétique est négligeable.

a)
$$\Delta \mathcal{E}_{o} = q E_{o} d$$

b)
$$\Delta \mathcal{E}_{c} = q E_{0} d$$

a)
$$\Delta \mathcal{E}_{c} = q E_{0} d$$
 b) $\Delta \mathcal{E}_{c} = q E_{0} d^{2}$ c) $\Delta \mathcal{E}_{c} = \frac{q E_{0} d}{2}$ d) $\Delta \mathcal{E}_{c} = 2q E_{0} d$

d)
$$\Delta \mathcal{E}_{c} = 2q E_{0} d$$

Déterminer le rayon de courbure R de la trajectoire de la particule dans la zone où règne le champ magnétique lorsque sa vitesse est v.

a)
$$R = \frac{mB}{qv}$$

b)
$$R = \frac{mvB}{a}$$
 c) $R = \frac{mv}{aB}$

c)
$$R = \frac{mv}{aB}$$

$$d) R = \frac{mB}{qv^2}$$

24. Calculer l'intervalle de temps T qui sépare deux accélérations consécutives dans la zone où règne E.

a)
$$T = 2\pi \frac{mv}{qB}$$

b)
$$T = \pi \frac{m}{aB}$$

c)
$$T = \pi \frac{m}{qvB}$$

b)
$$T = \pi \frac{m}{qB}$$
 c) $T = \pi \frac{m}{qvB}$ d) $T = \frac{qB}{2\pi mv^2}$

Quelle doit être la pulsation ω_0 du champ électrique pour qu'il soit toujours accélérateur ? On négligera le temps de transit dans la zone où règne E devant T.

a)
$$\omega_0 = \frac{qB}{mv}$$

b)
$$\omega_0 = \frac{mv}{aB}$$

c)
$$\omega_0 = \frac{qB}{mv^2}$$

d)
$$\omega_0 = \frac{qB}{m}$$

Calculer l'énergie cinétique \mathcal{E}_c des protons à la sortie du cyclotron.

a)
$$\mathcal{E}_{c} = \frac{q^{2}B^{2}R_{0}^{2}}{2m}$$

a)
$$\mathcal{E}_{c} = \frac{q^{2}B^{2}R_{0}^{2}}{2m}$$
 b) $\mathcal{E}_{c} = \frac{R_{0}^{2}}{2mq^{2}B^{2}}$ c) $\mathcal{E}_{c} = \frac{qBR_{0}^{2}}{2m}$ d) $\mathcal{E}_{c} = \frac{q^{2}R_{0}}{2mB^{2}}$

c)
$$\mathcal{E}_{c} = \frac{qBR_{c}^{2}}{2m}$$

d)
$$\mathcal{E}_{c} = \frac{q^2 R_0}{2mB^2}$$

27. Calculer le nombre N de tours effectués par une particule avant son éjection de l'appareil. PHYSIQUE - ÉNONCÉ

a)
$$N = \frac{qB^2R_0^2d}{2mE_0d}$$
 b) $N = \frac{qBR_0^2d}{2mE_0q}$ c) $N = \frac{qB^2R_0^2d}{2mE_0}$ d) $N = \frac{qB^2R_0^2}{4mE_0d}$

b)
$$N = \frac{qBR_0^2 d}{2mE_0 q}$$

c)
$$N = \frac{qB^2R_0d}{2mE_0}$$

d)
$$N = \frac{qB^2R_0^2}{4mE_0d}$$

28. Un réfrigérateur fonctionne de façon réversible entre deux sources S_c et S_f de températures constantes $T_c = 300 \text{ K}$ et $T_f = 263 \text{ K}$ respectivement. On désigne par W le travail reçu par la machine et par Q_c et Q_f les quantités de chaleur échangées avec les sources chaude et froide respectivement au cours d'un cycle. Calculer l'efficacité η_r du réfrigérateur.

a)
$$\eta_r = 0.53$$

b)
$$\eta_r = 0.65$$

c)
$$\eta_r = 5.72$$

d)
$$\eta_r = 7.11$$

En réalité, il existe des causes d'irréversibilité dans le fonctionnement de la machine. On constate que le rapport des quantités de chaleur Q_c et Q_f échangées au cours d'un cycle avec les sources chaude et

froide respectivement est lié au rapport des températures des sources par la relation $\frac{|Q_c|}{|Q_c|} = k \frac{T_c}{T_c}$ où k est

une constante positive.

Trouver l'efficacité η_i de la machine dans le cas où k = 1,2.

a)
$$\eta_i = 2.71$$

b)
$$\eta_i = 0.75$$

c)
$$\eta_i = 5.63$$

d)
$$\eta_i = 0.55$$

30. On désigne par S_p l'entropie produite au cours d'un cycle. Calculer le rapport $\frac{S_p}{W}$.

a)
$$\frac{S_p}{W} = 9.10^{-2} \text{ K}^{-1}$$

b)
$$\frac{S_p}{W} = 5.10^{-1} \text{ K}^-$$

a)
$$\frac{S_p}{W} = 9.10^{-2} \text{ K}^{-1}$$
 b) $\frac{S_p}{W} = 5.10^{-1} \text{ K}^{-1}$ c) $\frac{S_p}{W} = 2.10^{-3} \text{ K}^{-1}$ d) $\frac{S_p}{W} = 3.10^{-3} \text{ K}^{-1}$

d)
$$\frac{S_p}{W} = 3.10^{-3} \, \text{K}^{-1}$$