Cachan, Lyon et Ulm 1/6

COMPOSITION DE MATHEMATIQUES

(Sujet commun aux ENS de CACHAN, LYON et PARIS)

Dans tout le problème, L est un réel strictement positif fixé et I désigne l'intervalle fermé [0, L]. On notera $C^o(I)$ l'espace des fonctions définies et continues sur I, à valeurs réelles. Pour tout $k \in \mathbb{N}^+$, on note $C^k(I)$ l'espace des fonctions définies sur I et admettant une dérivée k-ème continue sur I (chaque dérivée j-ème en 0 pour $1 \le j \le k$ étant en fait une dérivée à droite, et chaque dérivée j-ème en L étant une dérivée à gauche). Enfin, on désigne par a et b deux fonctions appartenant à $C^1(I)$.

Première partie

Dans cette partie, on considère le problème :

$$\begin{cases} y'' = a \ y' + b \ y + g \\ y(0) = \alpha, \ y(L) = \beta \end{cases}$$

où $g \in C^0(I)$ et $(\alpha, \beta) \in \mathbb{R}^2$; on le transforme en un problème équivalent, et on montre que sous certaines conditions, il admet une solution unique.

1. Soient $g \in C^0(I)$ et $(\alpha_0, \alpha_1) \in \mathbb{R}^2$. Justifier brièvement l'existence et l'unicité dans $C^2(I)$ de la solution y au problème (1) suivant :

(1)
$$\begin{cases} y'' = a(x) y' + b(x) y + g(x) \\ y(0) = \alpha_0, y'(0) = \alpha_1. \end{cases}$$

2. On suppose que le problème $\begin{cases} y'' = a(x) \ y' + b(x) \ y \\ y(0) = 0, \ y(L) = 0 \end{cases}$ admet la seule solution $y \equiv 0$.

On note S l'espace vectoriel des solutions $y \in C^2(I)$ de l'équation y'' = a(x) y' + b(x) y.

- a) Quel est le rang de l'application de S dans \mathbb{R}^2 définie par $y \mapsto (y(0), y(L))$?
- b) Soient $g \in C^o(I)$ et $(\alpha, \beta) \in \mathbb{R}^2$.

Montrer que le problème :

(2)
$$\begin{cases} y'' = a(x) \ y' + b(x) \ y + g(x) \\ y(0) = \alpha, \ y(L) = \beta \end{cases}$$
 admet une solution unique $y \in C^2(I)$.

Cachan, Lyon et Ulm 2/6

3. Soit $g \in C^{0}(I)$. Montrer que l'équation :

$$y'' = a(x) y' + b(x) y + g(x)$$

équivaut à une équation de la forme :

(3)
$$-(p(x) y')' + q(x) y = h(x)$$

où p, q et h sont des fonctions que l'on déterminera. On choisira p de façon que p(0) = 1.

4. Montrer que si $b(x) \ge 0$ pour tout $x \in I$, alors pour tout $g \in C^0(I)$ et tout couple $(\alpha, \beta) \in \mathbb{R}^2$, il existe une unique fonction $y \in C^2(I)$ satisfaisant le problème (2).

(On pourra considérer l'équation (3) avec $h \equiv 0$ et les conditions aux bords y(0) = 0, y(L) = 0, multiplier l'équation différentielle par y et intégrer sur [0, L].)

Deuxième partie

Dans cette partie, on étudie le problème aux valeurs propres pour l'application définie par :

 $y \mapsto (-py')' + qy$, et on le ramène à un problème aux limites (5) pour une équation différentielle du premier ordre.

Soit $p \in C^2(I)$ une fonction minorée sur I par une constante p_0 strictement positive :

$$\exists p_0 > 0 : \forall x \in I, p(x) \ge p_0$$

Soit $q\in\,C^1(I)$. On cherche les nombres réels λ pour lesquels le problème :

(4)
$$\begin{cases} -(p(x) y')' + q(x) y = \lambda y \\ y(0) = 0, y(L) = 0 \end{cases}$$

admet des solutions $y \in C^2(I)$ non triviales, autrement dit non identiquement nulles. On note :

$$\mathbf{E} = \{ y \in \mathbf{C}^2(\mathbf{I}) ; y(0) = 0 , y(L) = 0 \};$$

$$\begin{array}{ccc} \mathbf{L}:\,\mathbf{E} & \rightarrow & C^o(I) \\ & y & \mapsto & (\text{-py'})' + qy \ . \end{array}$$

Par convention, un réel λ pour lequel le problème (4) admet une solution non triviale y_{λ} est appelé une valeur propre de L, et y_{λ} une fonction propre associée à cette valeur propre.

1. Dans cette question seulement, on considère le cas particulier où $p \equiv 1$ et $q \equiv 0$. Le problème (4) s'écrit alors :

$$\begin{cases} -y" = \lambda y \\ y(0) = 0, \quad y(L) = 0. \end{cases}$$

Déterminer les valeurs propres et les fonctions propres de l'endomorphisme L correspondant.

- Désormais, on considère le cas général décrit au début de la deuxième partie.
 - 2. En utilisant les résultats de la première partie :
 - **2.a.** Déterminer la dimension du sous-espace vectoriel de E constitué des solutions de (4) lorsque λ est une valeur propre de L;
 - **2.b.** Montrer qu'il existe un réel μ_0 tel que pour tout $\lambda \leq \mu_0$, le problème (4) n'admet que la solution triviale.
 - 3.a. Soient $\lambda \in \mathbb{R}$ et $y \in C^2(I)$. Montrer que y est une solution non triviale du problème (4) si et seulement si les conditions (i) et (ii) suivantes sont satisfaites :
 - (i) Il existe deux fonctions r(x) et $\theta(x)$ définies et de classe C^1 sur I telles que l'on ait :

$$\forall x \in I : \begin{cases} r(x) > 0 \\ y(x) = r(x) \sin \theta(x) \\ p(x) y'(x) = r(x) \cos \theta(x) ; \end{cases}$$

(ii) Les fonctions r et θ vérifient :

(5)
$$\begin{cases} \theta'(x) = \frac{\cos^2\theta(x)}{p(x)} - (q(x) - \lambda) \sin^2\theta(x) \\ \sin\theta(0) = 0, \sin\theta(L) = 0 \end{cases}$$

(6)
$$r'(x) = \left(\frac{1}{p(x)} + q(x) - \lambda\right) \sin \theta(x) \cos \theta(x) r(x).$$

Pour établir (i), on pourra considérer un intervalle maximal de la forme [0, T[avec T > 0 sur lequel r et θ sont définies et de classe C^1 , et raisonner par l'absurde en supposant T < L.

3. b. Montrer que λ est valeur propre de L si et seulement si le problème (5) admet au moins une solution $\theta \in C^1(I)$ telle que :

$$\theta(0) = 0$$
, $\theta(L) = n\pi$ $(n \in \mathbb{Z})$.

Troisième partie

Dans cette partie, on considère le problème défini par l'équation différentielle du problème (5) et la condition initiale $\theta(0) = 0$; on montre que ce problème admet une solution unique dans $C^{1}(I)$, et que cette solution est une fonction positive et croissante de λ .

Soit $p \in C^2(I)$ une fonction minorée sur I par une constante p_0 strictement positive :

$$\exists p_0 > 0 : \forall x \in I, p(x) \ge p_0.$$

Soit $q \in C^1(I)$ et soit $\lambda \in \mathbb{R}$.

Soit θ une solution maximale du problème :

(7)
$$\begin{cases} \theta'(x) = \frac{\cos^2\theta(x)}{p(x)} - (q(x) - \lambda) \sin^2\theta(x) \\ \theta(0) = 0. \end{cases}$$

- 1. On suppose que θ est définie et de classe C^1 sur un intervalle maximal de la forme [0, T[avec T < L.
- 1.a. Montrer que θ' est bornée sur [0, T[. En déduire la nature de l'intégrale $\int_{0}^{1} \theta'(x) dx$.
- 1.b. Montrer que $\theta(x)$ admet une limite finie à gauche en T. En déduire une contradiction avec l'hypothèse T < L. Conclure que θ appartient à $C^1([0, L])$.

On note désormais $\theta(x, \lambda)$ la solution maximale du problème (7) définie sur [0, L]. Toutes les dérivées de cette fonction seront prises par rapport à x; on note donc:

$$\theta'(x, \lambda) = \frac{\partial \theta}{\partial x} (x, \lambda).$$

- 2. On suppose qu'il existe $x_1 \in]0, L]$ tel que $\theta(x_1, \lambda) \le 0$. Soit x_0 la borne inférieure des valeurs x_1 possédant cette propriété.
- 2.a. Montrer que xo est strictement positif.
- **2.b.** Montrer que $\theta(x_0, \lambda) = 0$.
- **2.c.** Montrer qu'il existe $\varepsilon > 0$ tel que $\theta(x, \lambda)$ soit strictement croissante sur l'intervalle $]x_0 \varepsilon$, x_0 [. En déduire une contradiction avec la définition de x_0 , puis que $\theta(L, \lambda) > 0$.

Cachan, Lyon et Ulm 5/6

- 3. Soient λ et μ deux réels tels que $\lambda > \mu$. On suppose qu'il existe $x_1 \in]0$, L] tel que $\theta(x_1, \lambda) \le \theta(x_1, \mu)$. Soit x_0 la borne inférieure des valeurs x_1 possédant cette propriété.
- **3.a.** Montrer que $x_0 > 0$ et que $\theta(x_0, \lambda) = \theta(x_0, \mu)$.
- **3.b.** Montrer qu'il existe $\varepsilon > 0$ tel que $\forall x \in]x_0 \varepsilon, x_0 [: \theta'(x, \lambda) > \theta'(x, \mu)]$.
- 3.c. En déduire une contradiction avec la définition de x_0 , puis que la fonction $\lambda \mapsto \theta(L, \lambda)$ est strictement croissante.
- **4.a.** Soit $z \in C^1(I)$ telle que z(0) = 0. On suppose qu'il existe A, B > 0 tels que :

(8)
$$\forall x \in I : z'(x) \le A + B z(x).$$

Montrer qu'alors:

$$\forall x \in I : z(x) \le A \times e^{Bx}$$
.

4.b. Soient $\lambda, \mu \in \mathbb{R}$, $\lambda > \mu$. On pose $z(x) = \theta(x, \lambda) - \theta(x, \mu)$. En établissant une inégalité du type (8), montrer que l'application $\lambda \mapsto \theta(L, \lambda)$ est continue.

Quatrième partie

Dans cette partie, on détermine les limites de $\theta(L, \lambda)$ pour λ tendant vers $\pm \infty$, et en en déduit l'existence d'une suite infinie croissante de valeurs propres pour l'opérateur L.

Soit $p \in C^2(I)$ une fonction minorée sur I par une constante p_0 strictement positive :

$$\exists p_0 > 0 : \forall x \in I, p(x) \ge p_0.$$

Soit $q \in C^1(I)$; on note : $Q = \sup \{ |q(x)| ; x \in I \}$; $P = \sup \{ p(x) ; x \in I \}$. 1. Soit $\gamma \in [0, \pi/2[$.

1.a. Montrer qu'il existe $\mu_1 \in \mathbb{R}$ tel que :

$$\forall \ \lambda \in \mathbb{R}, \ \lambda < \mu_1, \quad \forall \ x \in [0, L] : \frac{\cos^2 \gamma}{p(x)} - (q(x) - \lambda) \sin^2 \gamma < 0.$$

1.b. En utilisant un raisonnement analogue à celui de 3.b de la troisième partie, montrer que :

$$\forall \ \lambda \in \ \mathbb{R}, \ \ \lambda < \mu_1, \ \ \forall \ x \in [0, L] \ : \ \theta(x, \lambda) \leq \gamma.$$

En déduire que $\theta(L, \lambda)$ tend vers 0 quand λ tend vers - ∞ .

Cachan, Lyon et Ulm 6/6

- 2. On note $N(\lambda)$ la partie entière de $\frac{\theta(L,\lambda)}{\pi}$.
- **2.a.** Montrer qu'il existe $\mu_2 \in \mathbb{R}$ tel que :

$$\forall \lambda \in \mathbb{R}, \lambda > \mu_2, \forall x \in I : \theta'(x, \lambda) > 0.$$

- **2.b.** Soit K un segment de $[0, \theta(L, \lambda)]$. Montrer que si $\lambda > \mu_2$, l'image réciproque J de K par l'application $x \mapsto \theta(x, \lambda)$ est un segment de [0, L].
- **2.c.** En considérant successivement les images réciproques par l'application $x \mapsto \theta(x, \lambda)$ des segments de la forme :

$$[k\pi - \varepsilon, k\pi + \varepsilon]$$
 et $[k\pi + \varepsilon, (k+1)\pi - \varepsilon], k \in \mathbb{N}$, de $[0, \theta(L, \lambda)]$,

montrer que pour $\varepsilon_0 > 0$ assez petit et $\mu_3 > 0$ assez grand :

$$\forall \ \lambda > \mu_3, \ \forall \ \epsilon \in \]0, \ \epsilon_0[\ : \ L \ \leq \ 4 \ (N(\lambda)+1) \ P\epsilon + \frac{(N(\lambda)+1) \ (\pi \ -2\epsilon)}{(\lambda \ - \ O) \ \sin^2 \epsilon} \, .$$

- **2.d.** En déduire que $\theta(L, \lambda)$ tend vers $+\infty$ quand λ tend vers $+\infty$.
- **3.a.** Montrer que l'application L définie dans la deuxième partie admet une suite $(\lambda_n)_{n\in\mathbb{N}^*}$ de valeurs propres réelles, croissante et non bornée.
- 3.b. Montrer que l'on a :

$$\forall y, z \in \mathbf{E} : \int_{0}^{L} \mathbf{L} y(x) z(x) dx = \int_{0}^{L} y(x) \mathbf{L} z(x) dx.$$

En déduire que si y_n et y_p sont deux fonctions propres associées à deux valeurs propres λ_n et λ_p distinctes, alors on a :

$$\int_{0}^{L} y_{n}(x) y_{p}(x) dx = 0.$$

4. En s'inspirant de l'exemple du II-1, proposer une méthode de résolution du problème :

$$\begin{cases} -(p(x)y')' + q(x) y = g(x) \\ v(0) = 0, v(L) = 0 \end{cases}$$

utilisant les fonctions propres y_n , $n \in \mathbb{N}^*$, pour l'opérateur L.

Quelles sont selon vous les hypothèses à formuler et les assertions à démontrer pour que votre méthode soit applicable ?