ULC 632 J. 6374

SESSION DE 1999

Groupes D/S et PC

COMPOSITION DE MATHÉMATIQUES

(Sujet commun aux ENS: Ulm, Lyon et Cachan)

Durée: 4 heures

L'usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d'accompagnement, est autorisé. Cependant, une seule calculatrice à la fois est admise sur la table ou le poste de travail, et aucun échange n'est autorisé entre les candidats.

Avertissement : Les labels \mathbf{Qn} , avec $0 \le n \le 20$ indiquent les questions, certaines d'entre elles étant découpées en sous-questions numérotées de 1 à j, avec $j \le 4$.

Notations

Dans tout le problème, on désigne par E l'ensemble (espace vectoriel sur \mathbb{C}) des fonctions $f: \mathbb{R} \to \mathbb{C}$ qui sont continues par morceaux, continues à gauche et 2π -périodiques. Si $f \in E$, on note

$$N_1(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(y)| dy, \quad N_2(f) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(y)|^2 dy\right)^{1/2}, \quad N_{\infty}(f) = \sup_{y \in [-\pi,\pi]} |f(y)|.$$

 $\mathbf{Q0}$ Montrez que les éléments de E sont des fonctions bornées.

Sommation de Césaro

En vue de l'application de cette partie aux séries de Fourier, on considère d'emblée une série $\sum c_n$, dont les termes, à valeurs complexes, sont indexés par les entiers relatifs $n \in \mathbb{Z}$. Pour une telle série, et pour $N \in \mathbb{N}$, on note

$$s_N = \sum_{n=-N}^{N} c_n, \quad \sigma_N = \frac{1}{N+1} (s_0 + \dots + s_N).$$

- Q1 Montrez que si la suite $(s_n)_{n\in\mathbb{N}}$ converge, alors $(\sigma_n)_{n\in\mathbb{N}}$ converge aussi vers une limite à préciser.
- Q2 1. La réciproque est-elle vraie?
 - 2. On suppose que la suite $(s_n)_{n\in\mathbb{N}}$ est à valeurs réelles et croissante, et que $(\sigma_n)_{n\in\mathbb{N}}$ converge vers l. Que peut-on dire de $(s_n)_{n\in\mathbb{N}}$?
- Q3 On suppose dans cette question que $(nc_n)_{n\in\mathbb{Z}}$ est bornée : $|nc_n| \leq M$ pour tout $n\in\mathbb{Z}$. Pour $k,N\in\mathbb{N}^*$, on définit

$$\sigma_{N,k} = \frac{1}{k}(s_N + \dots + s_{N+k-1}).$$

1. Calculez

$$\sigma_{N,k} - \left(1 + \frac{N}{k}\right)\sigma_{N+k-1} + \frac{N}{k}\sigma_{N-1}.$$

Etablir que si une suite $(k_N)_{N\in\mathbb{N}}$ tend vers l'infini, avec N/k_N tendant vers une limite finie l, alors

$$\lim_{N \to +\infty} \sigma_N = s \Longrightarrow \lim_{N \to +\infty} \sigma_{N,k_N} = s.$$

2. Calculez

$$\sigma_{N,k} - s_N - \sum_{N < |n| < N+k} \left(1 + \frac{N - |n|}{k} \right) c_n.$$

Prouvez

$$|\sigma_{N,k} - s_N| \le \frac{Mk}{N}.$$

3. On suppose que $(\sigma_N)_{N\in\mathbb{N}}$ converge vers une limite l. Que peut-on dire de $(s_N)_{N\in\mathbb{N}}$?

Séries de Fourier

Dans cette section, $c_n : x \mapsto c_n(x)$ est une fonction, de la forme $c_n(x) = a_n e^{inx}$, avec $a_n \in \mathbb{C}$. La série $\sum c_n$ est donc une série trigonométrique, à laquelle on associe comme ci-dessus sa somme partielle s_N et sa somme de Césaro σ_N , qui sont des éléments de E.

Lorsque $f \in E$, on lui associe ses coefficients de Fourier $\hat{f}(n)$:

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iny}dy.$$

Si $\sum c_n$ est la série de Fourier de f, c'est-à-dire si $a_n = \hat{f}(n)$, alors on note $S_N f = s_N$ et $T_N f = \sigma_N$.

Q4 Si $\sum a_n e^{inx}$ est une série trigonométrique, exprimer en fonction des a_n les nombres b_n tels que

$$\sigma_N(x) = \sum_{n=-N}^N b_n e^{inx}.$$

Q5 Soit F une partie non vide de \mathbb{Z} et soit $f \in E$. On suppose que

- pour tout $n \in F$, on a $\hat{f}(n) = 1$,
- $N_1(f) \leq 1.$

Déterminez $N_1(f)$ et prouvez que, pour tout $n \in F$, $x \mapsto f(x)e^{-inx}$ est à valeurs réelles positives. En déduire que F n'a qu'un seul élement et déterminez f.

Q6 1. Soit $r, N \in \mathbb{N}$. On note

$$u(x) = \sum_{n=-N}^{N} e^{inx}, \quad v(x) = \sum_{n=-N-r}^{N+r} e^{inx}.$$

Etablir une majoration de $N_1(g)$, pour $g(x) = \frac{1}{2N+1}u(x)v(x)$.

- 2. Etant donné un nombre réel $\epsilon > 0$ et une partie finie F de \mathbb{Z} , construire une fonction $f \in E$ telle que
 - (a) pour tout $n \in \mathbb{Z}$, on a $\hat{f}(n) \in [0, 1]$,
 - (b) pour tout $n \in F$, on a $\hat{f}(n) = 1$,
 - (c) $N_1(f) < 1 + \epsilon$.

Q7 Montrez que, pour tout $f \in E$, on a

$$S_N f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x - y) dy,$$

pour

$$D_N(x) = \frac{\sin\left(N + \frac{1}{2}\right)x}{\sin\frac{x}{2}}.$$

On appelle D_N le noyau de Dirichlet (d'ordre N).

Q8 De même, montrez que, pour tout $f \in E$, on a

$$T_N f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) F_N(x - y) dy,$$

pour

$$F_N(x) = \frac{1}{N+1} \left(\frac{\sin \frac{(N+1)x}{2}}{\sin \frac{x}{2}} \right)^2.$$

On appelle F_N le noyau de Fejer (d'ordre N).

Q9 1. Calculez, pour $f \in E$,

$$S_N f(x) - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-y) D_N(y) dy,$$

$$T_N f(x) - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-y) F_N(y) dy.$$

2. Calculez les intégrales

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(x) dx, \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} F_N(x) dx.$$

3. Etant donné un nombre réel $\eta \in]0, \pi[$, déterminez

$$\lim_{N \to +\infty} \left(\int_{-\pi}^{-\eta} F_N(y) dy + \int_{\eta}^{\pi} F_N(y) dy \right).$$

Q10 Soit $f \in E$.

1. On suppose que f est continue en un point x_0 . Montrez que

$$\lim_{N\to+\infty}T_Nf(x_0)$$

existe et déterminez la limite.

2. On suppose que f est en fait continue en tout point. Montrez que f est uniformément continue, puis que $T_N f$ converge uniformément sur R.

Q11 Soit $f \in E$. Montrez que

$$\lim_{N\to+\infty} N_1(f-T_N f)=0.$$

Indication : commencer par le cas où f est continue.

Q12 Soit $\sum a_n e^{inx}$ une série trigonométrique.

1. Calculez

$$a_n\left(1-\frac{|n|}{N+1}\right)-\frac{1}{2\pi}\int_{-\pi}^{\pi}\sigma_N(y)e^{-iny}dy,$$

pour tout n, N tels que $|n| \leq N$.

2. On suppose que

$$\lim_{N\to+\infty}N_1(\sigma_N)=0.$$

Montrez que $a_n = 0$ pour tout n appartenant à \mathbb{Z} .

Fonctions de type positif

Pour $f, g \in E$, on définit une fonction $f * g : \mathbb{R} \to \mathbb{C}$ par

$$(f * g)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y)g(y)dy.$$

Q13 Montrez que f * g est 2π -périodique et que f * g = g * f.

On admet que $f * g \in E$. De même, la fonction $h : \mathbb{R} \to \mathbb{C}$ définie par

$$h(y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y) \overline{g(x)} dx$$

appartient à E et on admet que les nombres

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (f * g)(x) \overline{g(x)} dx \quad \text{et} \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} g(y) h(y) dy$$

coïncident. On note $I_f(g)$, ou encore

$$\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x-y)g(y)\overline{g(x)}dxdy,$$

leur valeur commune.

On désigne alors par P l'ensemble des f appartenant à E telles que, pour toute fonction $u: \mathbb{R} \to \mathbb{C}$ continue et 2π -périodique, $I_f(u)$ est réel positif. Les éléments de P sont les fonctions de type positif.

On appelle enfin polynôme trigonométrique toute fonction $v: \mathbb{R} \to \mathbb{C}$ de la forme

$$v(x) = a_{-m}e^{-imx} + \dots + a_me^{imx}.$$

Les nombres complexes a_{-m}, \ldots, a_m sont les coefficients de v. On rappelle le théorème de Stone-Weierstrass, sous la forme suivante : pour toute fonction $v: \mathbb{R} \to \mathbb{C}$ continue et 2π -périodique, il existe une suite $(v_m)_{m \in \mathbb{N}}$, où chaque v_m est un polynôme trigonométrique, et telle que $N_{\infty}(v_m - v) \to 0$ quand $m \to \infty$.

Q14 Montrez que tout polynôme trigonométrique à coefficients réels positifs appartient à P.

Q15 Soit $f \in E$.

1. Si $u, v : \mathbb{R} \to \mathbb{C}$ sont continues et 2π -périodiques, montrez que

$$|I_f(u) - I_f(v)| \le N_1(f)N_{\infty}(u - v)(N_{\infty}(u) + N_{\infty}(v)).$$

2. Montrez que f appartient à P si et seulement si $I_f(v)$ est réel positif pour tout polynôme trigonométrique v.

Q16 Soit $f \in E$.

- 1. Montrez que $f \in P$ si et seulement si $\hat{f}(n)$ est réel positif pour tout n dans \mathbb{Z} .
- 2. Soit $f \in P$, et x un point où f est continue. Exprimez f(-x) en fonction de f(x).

3. Soient $f \in P$ et $N \in \mathbb{N}$. A-t-on $S_N f \in P$ et $T_N f \in P$?

Q17 Soit $f, g \in E$.

- 1. Exprimez $\widehat{f * g}(n)$ en fonction de $\widehat{f}(n)$ et $\widehat{g}(n)$.
- 2. En déduire que, si f^* désigne la fonction $x \mapsto f^*(x) = \overline{f(-x)}$, alors $f * f^* \in P$. Q18 Soit $f \in P$.
 - 1. La suite $(T_N f(0))_{N \in \mathbb{N}}$ est-elle bornée?
 - 2. Exprimant $T_N f(0)$ au moyen des coefficients de Fourier de f, en déduire que la série à termes réels positifs $\sum_{n \in \mathbb{Z}} \hat{f}(n)$ converge (c'est-à-dire que les séries $\sum_{n\geq 0} \hat{f}(n)$ et $\sum_{n\leq 0} \hat{f}(n)$ convergent).
 - 3. En déduire que f est continue et exprimer, pour tout nombre réel x,

$$\sum_{n=-\infty}^{+\infty} \hat{f}(n)e^{inx}$$

en fonction de f(x). En particulier, montrez que f(0) est réel et $|f(x)| \leq f(0)$.

4. En déduire une démonstration de la formule de Parseval pour $\phi \in E$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |\phi(x)|^2 dx = \sum_{n \in \mathbb{Z}} |\hat{\phi}(n)|^2.$$

Q19 Soit $f \in P$. Montrez que, pour tout ensemble fini $(x_j)_{j=1,\dots,p}$ de nombres réels, et pour tous les nombres complexes $(z_j)_{j=1,\dots,p}$, l'expression

$$\sum_{j=1}^{p} \sum_{k=1}^{p} f(x_j - x_k) \, \overline{z_k} \, z_j$$

est un nombre réel positif. Indication: on pourra d'abord vérifier que $T_N f$ satisfait cette propriété.

Q20 Soit $f \in P$.

1. Soit $a \in \mathbb{R}, \ a \neq 0$. Montrez que la fonction $g: \mathbb{R} \to \mathbb{C}$, définie par

$$x \mapsto g(x) = \frac{1}{a^2} (2f(x) - f(x+a) - f(x-a))$$

appartient à P.

2. On suppose qu'il existe une suite de nombres réels $(a_m)_{m\in\mathbb{N}}$, avec $a_m>0$, tendant vers zéro, telle que

$$\lambda \equiv \sup_{m \in \mathbb{N}} \frac{1}{a_m^2} (2f(0) - f(a_m) - f(-a_m)) < +\infty.$$

(a) Déterminez le signe de

$$\sum_{n\in \mathbb{Z}} n^2 \hat{f}(n) - \lambda.$$

- (b) En déduire que f est de classe C^2 .
- 3. Donnez un exemple de fonction de type positif qui n'est pas de classe C^2 .