CONCOURS COMMUN 2006 DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES

Épreuve Spécifique de Mathématiques (filière MPSI)

Vendredi 12 mai 2006 de 8h00 à 12h00

Corrigé

Auteur du Sujet : M. BREVET- Lycée Montaigne - BORDEAUX

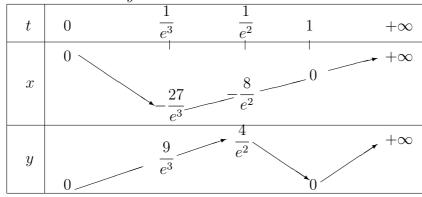
corrigé Analyse

- 1) $\overline{\lim_{t\to 0^+} t \cdot \ell n^3 t} = \lim_{t\to 0^+} t \cdot \ell n^2 t = 0$ sont des limites usuelles. x et y sont donc continues en 0 pour $\lambda = 0$.
- 2) $t \mapsto t$ et ℓn étant dérivables (et même de classe \mathcal{C}^{∞}) sur $]0, +\infty[$, x et y sont dérivables (\mathcal{C}^{∞}) sur $]0, +\infty[$ comme produit, et on a : $\boxed{\forall t>0, x'(t)=\ell n^2(t).(3+\ell n\,t)}$; $\boxed{\forall t>0, y'(t)=\ell n\,(t).(2+\ell n\,t)}$. Le signe de x' et y' est alors donné par les tableaux suivants :

Ì	t	0		e^{-3}	1		$+\infty$	
	x'(t)		_	0 +	. 0	+		

t = 0	ϵ	-2	1		$+\infty$
y'(t)	+	0 -	0	+	

3) Le tableau de variations de x et y est donc :



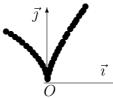
4) Soit u au voisinage de 0. Comme $1+u\sim 1$ et $\ell n\,(1+u)\sim u$, on a par produit d'équivalents : $(1+u)\ell n^{\,3}(1+u)\sim 1.u^3$ donc $x(1+u)\sim u^3$.

De plus $y(1+u) = (1+u)\ell n^2(1+u) = (1+u).\left(u-\frac{u^2}{2}+o(u^2)\right)^2 = (1+u).u^2.\left(1-\frac{u}{2}+o(u)\right)^2$ d'où $y(1+u) = u^2.(1+u).(1-u+o(u)) = u^2.(1-u+u+o(u))$ soit $\boxed{y(1+u) = u^2+o(u^3)}$.

Le seul réel t_0 annulant f' est $\underline{t_0=1}$ donc seul le point f(1) (à savoir (0,0)) est un point singulier de l'arc. Or au voisinage de t=1 on a, d'après les calculs précédents :

$$f(t) = (t-1)^2 \cdot (0,1) + (t-1)^3 \cdot (1,0) + o((t-1)^3)$$

Comme (0,1) et (1,0) ne sont pas colinéaires, et 2 étant pair et 3 impair, le point singulier est point de rebroussement de première espèce et un vecteur directeur de la tangente est $\vec{\jmath}$.



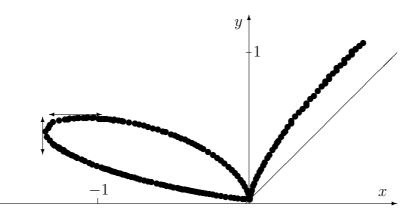
5)
$$\forall t > 0$$
, $\frac{y(t)}{x(t)} = \frac{1}{\ell n \, t}$. On a : $\lim_{t \to +\infty} \frac{y(t)}{x(t)} = \lim_{t \to 0^+} \frac{y(t)}{x(t)} = 0$.

On peut conclure que l'arc possède une branche parabolique de direction (0x) au voisinage de $+\infty$.

Comme $\lim_{t\to 0^+} \frac{y(t)-y(0)}{x(t)-x(0)} = 0$, les sécantes passant par le point f(0) ont une position limite

donc <u>l'arc</u> possède au point f(0) une demi-tangente définie par y=0 et $x\leqslant 0$.

- **6)a)** Soit t > 0. On a : $x(t) = y(t) \Leftrightarrow (\ell n t 1) \ell n^2(t) = 0 \Leftrightarrow t = 1$ ou t = e.
- $\mathcal{C} \cap \Delta$ est donc constitué de f(0), f(1) et f(e), à savoir le point O et le point de coordonnées (e,e).



7)
$$Z_0(x) = \int_1^x t^{\alpha} dt$$
, soit : $Z_0(x) = \frac{1}{\alpha+1} (x^{\alpha+1} - 1)$.

 $7) \ Z_0(x) = \int_1^x t^\alpha \, dt, \ \mathrm{soit} : \boxed{Z_0(x) = \frac{1}{\alpha+1} \left(x^{\alpha+1} - 1 \right)}.$ On calcule $Z_1(x)$ par intégration par parties ($t \mapsto t^{\alpha+1}$ et ℓn étant de classe \mathcal{C}^1 sur $]0, +\infty[$ donc sur $]1, x[): Z_1(x) = \left[\frac{t^{\alpha+1}}{\alpha+1} \ell n \, t\right]_1^x - \int_1^x \frac{t^{\alpha+1}}{\alpha+1} \cdot \frac{1}{t} dt.$

$$Z_1(x) = \left[\frac{t^{\alpha+1}}{\alpha+1} \ln t\right]_1^x - \int_1^x \frac{t^{\alpha+1}}{\alpha+1} \cdot \frac{1}{t} dt$$

$$\mathsf{D'o\grave{u}}: \boxed{Z_1(x) = \frac{x^{\alpha+1}}{\alpha+1}\ell n\, x - \frac{1}{\alpha+1}Z_0(x), \, \mathsf{puis}: Z_1(x) = \left(\frac{1}{\alpha+1}\right)^2 + \left[-\left(\frac{1}{\alpha+1}\right)^2 + \frac{1}{\alpha+1}\ell n\, x\right]x^{\alpha+1}}$$

8) De la même façon, on intègre par parties $Z_{n+1}(x)$ (ℓn^{n+1} est de classe \mathcal{C}^1):

$$Z_{n+1}(x) = \frac{1}{(n+1)!} \left[\frac{t^{\alpha+1}}{\alpha+1} \ell n^{n+1}(t) \right]_{1}^{x} - \frac{1}{(n+1)!} \int_{1}^{x} \frac{n+1}{\alpha+1} t^{\alpha+1} \cdot \frac{1}{t} \ell n^{n}(t) dt$$

d'où la relation
$$Z_{n+1}(x)=-\frac{1}{\alpha+1}Z_n(x)+\frac{1}{\alpha+1}\frac{\ell n^{n+1}(x)}{(n+1)!}x^{\alpha+1}$$

9) On procède par récurrence.

Pour
$$n \in \mathbb{N}$$
, on note $\mathcal{P}(n)$ la proposition : " $Z_n(x) = \left(\frac{-1}{\alpha+1}\right)^{n+1} - \left[\sum_{k=0}^n \left(\frac{-1}{\alpha+1}\right)^{n+1-k} \frac{\ell n^k(x)}{k!}\right] x^{\alpha+1}$ "

Pour n=0 le membre de droite de l'écriture ci-dessus donne : $-\frac{1}{\alpha+1}+\frac{1}{\alpha+1}x^{\alpha+1}$, ce qui est bien $Z_0(x)$. Donc $\mathcal{P}(0)$ est vraie.

Supposons $\mathcal{P}(n)$ vraie pour un entier naturel n fixé

$$\begin{aligned} &\text{On a alors}: Z_{n+1}(x) = -\frac{1}{\alpha+1} \left\{ \left(\frac{-1}{\alpha+1} \right)^{n+1} - \left[\sum_{k=0}^n \left(\frac{-1}{\alpha+1} \right)^{n+1-k} \frac{\ell n^{\,k}(x)}{k!} \right] x^{\alpha+1} \right\} + \frac{1}{\alpha+1} \frac{\ell n^{\,n+1}(x)}{(n+1)!} x^{\alpha+1} \\ &\text{c'est-\`a-dire}: Z_{n+1}(x) = \left(\frac{-1}{\alpha+1} \right)^{n+2} - \left[\sum_{k=0}^n \left(\frac{-1}{\alpha+1} \right)^{n+2-k} \frac{\ell n^{\,k}(x)}{k!} \right] x^{\alpha+1} - \left(\frac{-1}{\alpha+1} \right)^{n+2-(n+1)} \frac{\ell n^{\,n+1}(x)}{(n+1)!} x^{\alpha+1} \end{aligned}$$

donc $\mathcal{P}(n+1)$ est vraie.

Par le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout entier naturel n.

10) Soit
$$(a_0, \ldots a_n) \in \mathbb{R}^n$$
. Posons : $p: x \mapsto \sum_{k=0}^n a_k x^k$.

$$x \mapsto \int_1^x p(\ell n\, t) t^\alpha \, dt \text{ est une primitive de } g: x \mapsto p(\ell n\, x) x^\alpha. \text{ Or pour } x > 0, \\ \int_1^x p(\ell n\, t) t^\alpha \, dt = \sum_{k=0}^n a_k. k!. Z_k(x).$$

D'après l'expression trouvée dans la question précédente, Z_k est à une constante près dans $\mathcal{N}_{\alpha+1}^k\subset\mathcal{N}_{\alpha+1}^n$. $\mathcal{N}_{\alpha+1}^n$ est stable par combinaison linéaire donc on obtient l'existence d'une primitive de g qui soit élément de $\mathcal{N}_{\alpha+1}^n$.

11)
$$(E_1) \Leftrightarrow y' = \frac{\alpha}{r} y \Leftrightarrow y(x) = \lambda e^{\alpha \ell n x} \text{ avec } \lambda \in \mathbb{R}.$$

Les solutions de (E_1) sont donc les fonctions du type $x \mapsto \lambda x^{\alpha}$ avec $\lambda \in \mathbb{R}$

12)a) exp est de classe \mathcal{C}^2 sur \mathbb{R} à valeurs dans $]0, +\infty[$ où h est de classe \mathcal{C}^2

Donc $k = \exp \circ h$ est donc de classe $C^2 = \sup \mathbb{R}$.

De plus :
$$\forall u \in \mathbb{R}$$
 , $k'(u) = e^u h'(e^u)$ et $k''(u) = e^u h'(e^u) + e^{2u} h''(e^u)$

```
12)b)
```

 $\forall x > 0 \,, \, x^2 \cdot h''(x) + (1 - 2\alpha)x \cdot h'(x) + \alpha^2 h(x) = 0 \Leftrightarrow \forall u \in \mathbb{R} \,, \, e^{2u} \cdot h''(e^u) + (1 - 2\alpha)e^u \cdot h'(e^u) + \alpha^2 h(e^u) = 0 \,,$ puis : $\forall u \in \mathbb{R}$, $e^{2u} \cdot h''(e^u) + e^u \cdot h'(e^u) - 2\alpha e^u \cdot h'(e^u) + \alpha^2 h(e^u) = 0 \Leftrightarrow \forall u \in \mathbb{R}$, $k''(u) - 2\alpha k'(u) + \alpha^2 k(u) = 0$

12)c) $z'' - 2\alpha z' + \alpha^2 z = 0$ est une équation différentielle linéaire du second ordre homogène dont l'équation caractéristique $r^2-2\alpha r+\alpha^2=0$ a pour racine double $r=\alpha$.

D'où : $\exists (\lambda, \mu) \in \mathbb{R}^2, \forall u \in \mathbb{R}, k(u) = (\lambda u + \mu)e^{\alpha u}$

12)d) On effectue le changement de variable : $x = e^u \Leftrightarrow x = \ell n \ u$ avec $(x, u) \in]0, +\infty[\times \mathbb{R}]$.

On obtient donc : $\exists (\lambda, \mu) \in \mathbb{R}^2$, $\forall x > 0$, $h(x) = (\lambda \ln x + \mu) e^{\alpha \ln x} = (\lambda \ln x + \mu) x^{\alpha}$.

L'ensemble des solutions de (E_2) est donc bien \mathcal{N}_{α}^1

13)b) Pour $n \in \mathbb{N}^*$, on note $\mathcal{Q}(n)$: " $\exists (a_0, \dots, a_{n-1}) \in \mathbb{R}^n$, $P^n(y) = x^n \cdot y^{(n)} + \sum_{k=0}^{n-1} a_k x^k \cdot y^{(k)}$ ".

On a $P^1(y) = xy' - a_0.y$ avec $a_0 = \alpha$ donc Q(1) est vraie. Supposons Q(n) vraie pour un entier naturel n fixé.

Ecrivons donc : $P^n(y) = x^n.y^{(n)} + \sum\limits_{k=0}^{n-1} a_k\,x^k.y^{(k)}.$ D'autre part, on pose, par commodité, $a_{-1} = 0.$ Or : $P^{n+1}(y) = P(P^n(y)) = x^{n+1}.y^{(n+1)} + nx^n.y^{(n)} + \sum\limits_{k=0}^{n-1} a_k\,\left(x^{k+1}.y^{(k+1)} + kx^k.y^{(k)}\right) - \alpha P^n(y),$ d'où $P^{(n+1)}(y) = x^{n+1}.y^{(n+1)} + \sum\limits_{k=0}^{n} b_k\,x^k.y^{(k)}$ avec $b_n = n - \alpha + a_{n-1}$ et pour $0 \leqslant k \leqslant n-1$, $b_k = (k-1)a_k + a_{k-1}$

Comme $(b_0, \ldots, b_n) \in \mathbb{R}^{n+1}$, $\mathcal{Q}(n+1)$ est vraie. Par le principe de récurrence, $\mathcal{Q}(n)$ est vraie pour tout $n \in \mathbb{N}^*$.

13)c) On procède une fois encore par récurrence. Pour $n \in \mathbb{N}^*$, on pose : $\mathcal{R}(n) : P^n(y) = 0 \Leftrightarrow y \in \mathcal{N}_{\alpha}^{n-1}$. $\mathcal{R}(1)$ est vrai d'après la question 11. Supposons $\mathcal{R}(n)$ vraie pour un entier $n \in \mathbb{N}^*$ fixé.

D'où $P^{n+1}(y) = 0 \Leftrightarrow P^n(P(y)) = 0 \Leftrightarrow P(y) = (a_0 + a_1 \ell n \, x + \dots a_{n-1} \ell n \, n^{n-1} x) x^{\alpha}$ avec $(a_0, \dots, a_n) \in \mathbb{R}^n$.

En utilisant la méthode de la variation de la constante ($y=\lambda(x)x^{\alpha}$), on aboutit à :

 $\lambda'(x)x^{\alpha+1} = (a_0 + a_1\ell n \, x + \dots a_{n-1}\ell n^{n-1}x)x^{\alpha} \text{ soit } \lambda'(x) = \frac{1}{x}(a_0 + a_1\ell n \, x + \dots + a_{n-1}\ell n^{n-1}x).$ Donc : $\lambda(x) = a + a_0\ell n \, x + \frac{1}{2}a_1\ell n^2 x + \dots + \frac{1}{n}a_{n-1}\ell n^n x \ (a \in \mathbb{R}),$

puis : $y = (a + \sum_{k=1}^{n} \frac{1}{k} a_{k-1} \ell n^k x) x^{\alpha}$, d'où $\mathcal{R}(n+1)$.

Barème Analyse

```
question 1:1 point
question 2:2 points (dérivées) +2 points (signe)
question 3:2 points
question 4: 2 points (x) +2 points (y) + 1 point (nature) + 1 point (schéma)
question 5:1 point (deux limites) +1 point (branche infinie) +2 points (demi-tangente)
question 6a: 2 points
question 6b: 3 points
  soit : Partie 1 : 22 points
question 7 : 1 point (Z_0) + 2 points (Z_1)
question 8:3 points
question 9:3 points
question 10:3 points
  soit : Partie 2 : 12 points
question 11:2 points
question 12a:1 point (classe) +2 points (dérivées)
question 12b: 2 points
question 12c: 2 points
question 12d : 1 point
question 13a: 2 points
question 13b: 2 points
question 13c: 2 points
  soit : Partie 3 : 16 points
```

Corrigé du problème d'algèbre

- 1) Supposons $A_{n,\alpha}$ non vide. Il existe donc $p \in \mathbb{N}^*$ tel que $\exp(2i\pi np\alpha) = 1$ i.e. $np\alpha \in \mathbb{Z}$. Il existe donc $q \in \mathbb{Z}$ tel que : $\alpha = \frac{q}{n\pi}$. α est donc bien un nombre rationnel.
- Supposons $\alpha \in \mathbb{Q}$. Il existe $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que : $\alpha = \frac{p}{q}$. D'où : $\exp(2i\pi nq\alpha) = \exp(2i\pi np) = 1$ donc $q \in A_{n,\alpha}$ et $A_{n,\alpha}$ n'est pas l'ensemble vide.

On a donc : $A_{n,\alpha} \neq \emptyset \iff \alpha \in \mathbb{Q}$.

- 2) Soit $p \in \mathbb{N}^*$. On a : $\exp(2i\pi np\alpha) = 1 \Leftrightarrow [\exp(2i\pi np\alpha)]^{-1} = 1 \Leftrightarrow \exp(2i\pi np(-\alpha)) = 1$. D'où $p \in A_{n,\alpha} \Leftrightarrow p \in A_{n,-\alpha}$, soit encore $A_{n,\alpha} = A_{n,-\alpha}$. Donc : $\min(A_{n,\alpha}) = \min(A_{n,\alpha})$, i.e. $p(\alpha) = p(-\alpha)$.
- 3) Soit $p \in \mathbb{N}^*$. On a : $p \in A_{n,\alpha} \Leftrightarrow p \in A_{n,|\alpha|} \Leftrightarrow np|\alpha| \in \mathbb{Z}$.
- Or $\alpha \neq 0$ donc $|\alpha| > 0$ et par conséquent comme $(p,n) \in (\mathbb{N}^*)^2$, on a : $np|\alpha| > 0$.

D'où : $p \in A_{n,\alpha} \Leftrightarrow np|\alpha| \in \mathbb{N}^* \Leftrightarrow \exists t \in \mathbb{N}^*, np^T = t.$

 $\mathsf{puis}: p \in A_{n,\alpha} \Leftrightarrow \exists t \in \mathbb{N}^* \,, \, npr = st \Leftrightarrow \exists t \in \mathbb{N}^* \,, \, dn'pr = ds't. \,\, \mathsf{Comme} \,\, n \neq 0, \, d = n \wedge s \neq 0.$

D'où : pour $p \in \mathbb{N}^*$, $p \in A_{n,\alpha} \Leftrightarrow [\exists t \in \mathbb{N}^*, p.n'.r = s'.t]$.

- 4) Or $p.n'.r = s'.t \Rightarrow [s' \text{ divise } (p.n'.r)].$
- Or $r \wedge s = 1$ donc $r \wedge s' = 1$. De plus $n' \wedge s' = 1$. D'où : $(n'.r) \wedge s' = 1$.

On applique alors le théorème de Gauss : s' divise p. Ainsi : $p \in A_{n,\alpha} \Rightarrow \exists k \in \mathbb{N}^*$, p = s'.k.

Donc $A_{n,\alpha} \subset \{s'k \mid k \in \mathbb{N}^*\}$, d'où $\min(A_{n,\alpha}) \geqslant s'$.

Or $\exp(2i\pi ns'.\frac{r}{s})=\exp(2i\pi d.n'.s'.\frac{r}{d.s'})=\exp(2i\pi n'.r)=1$ donc $s'\in A_{n,\alpha}$. D'où $s'=\min(A_{n,\alpha})$ i.e. $\boxed{p(\alpha)=\frac{s}{n\wedge s}}$

- 5) La matrice nulle, élément neutre pour l'addition des matrices, n'appartient pas à J. $\mathbb J$ n'est donc pas un sous-espace vectoriel de $\mathcal M_3(\mathbb C)$.
- **6)** On a : $N^0 = I$; $N^1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$; $N^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$; $\forall p \geqslant 3$, $N^p = O$ (matrice nulle)

On a d'autre part : $J_{\lambda}=\lambda I+N$. Or λI et N sont deux matrices de l'anneau $\mathcal{M}_3(\mathbb{C})$ qui commutent donc la formule du binôme de Newton peut être utilisée et s'écrit : $\forall p \in \mathbb{N} \,, \, (J_{\lambda})^p = \sum_{k=0}^p \binom{p}{k} \left(\lambda I\right)^{p-k} N^k$.

D'où pour $p\geqslant 2$: $(J_{\lambda})^p=\lambda^pI+p\lambda^{p-1}N+\frac{p(p-1)}{2}\lambda^{p-2}N^2$

pour p=0, le membre de droite de l'égalité ci-dessus est I : c'est bien $(J_{\lambda})^0$

pour p=1, le membre de droite vaut $\lambda I + N$: c'est J_{λ} .

 $\mathsf{Donc}: \forall p \in \mathbb{N} \,,\, (J_\lambda)^p = u_p.I + v_p.N + w_p.N^2 \,\, \mathsf{avec} \,\, \boxed{ u_p = \lambda^p \,,\, v_p = p\lambda^{p-1} \,,\, w_p = \frac{p(p-1)}{2}\lambda^{p-2} }$

7) Soit $p \ge 2$. Par la structure d'espace vectoriel de $\mathcal{M}_3(\mathbb{C})$, S_p est égal à :

$$\left(\sum_{k=0}^{p} \frac{\lambda^{k}}{k!}\right) I + \left(\sum_{k=0}^{p} \frac{k}{k!} \lambda^{k-1}\right) N + \frac{1}{2} \left(\sum_{k=0}^{p} \frac{k(k-1)}{k!} \lambda^{k-2}\right) N^{2}$$

c'est-à-dire $\left(\sum\limits_{k=0}^{p}\frac{\lambda^k}{k!}\right)I+\left(\sum\limits_{\mathbf{k=1}}^{p}\frac{k}{k!}\lambda^{k-1}\right)N+\frac{1}{2}\left(\sum\limits_{\mathbf{k=2}}^{p}\frac{k(k-1)}{k!}\lambda^{k-2}\right)N^2$, soit encore :

 $S_p = \left(\sum_{k=0}^p \frac{\lambda^k}{k!}\right) I + \left(\sum_{k=0}^p \frac{\lambda^{k-1}}{(k-1)!}\right) N + \frac{1}{2} \left(\sum_{k=0}^p \frac{\lambda^{k-2}}{(k-2)!}\right) N^2 = \left(\sum_{k=0}^p \frac{\lambda^k}{k!}\right) I + \left(\sum_{k=0}^{\mathbf{p}-1} \frac{\lambda^k}{k!}\right) N + \frac{1}{2} \left(\sum_{k=0}^{\mathbf{p}-2} \frac{\lambda^k}{k!}\right) N^2.$

On obtient donc: $\forall p \geqslant 2$, $S_p = x_p.I + x_{p-1}.N + \frac{1}{2}x_{p-2}.N^2$ avec: $\forall p \in \mathbb{N}$, $x_p = \sum_{k=0}^p \frac{\lambda^k}{k!}$

8) Pour $p \in \mathbb{N}$, on a : $S_p = \begin{pmatrix} x_p & x_{p-1} & \frac{1}{2}x_{p-2} \\ 0 & x_p & x_{p-1} \\ 0 & 0 & x_p \end{pmatrix}$.

Comme la suite x converge vers e^{λ} , on obtient donc : $S = e^{\lambda} \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

9) Si f est définie sur \mathbb{R} , alors q est encore définie sur \mathbb{R} à valeurs complexes.

Donc φ est bien une application de E dans E.

Soient $(f_1, f_2) \in E^2$ et $\lambda \in \mathbb{C}$. Soit x un nombre réel quelconque.

On a : $\varphi(f_1 + \lambda.f_2)(x) = (f_1 + \lambda.f_2)(x + 2\pi) = f_1(x + 2\pi) + (\lambda.f_2)(x + 2\pi) = f_1(x + 2\pi) + \lambda.f_2(x + 2\pi)$

 $\mathsf{d'où}: \varphi(f_1+\lambda.f_2)(x) = \varphi(f_1)(x) + \lambda.\varphi(f_2)(x) = (\varphi(f_1) + \lambda.\varphi(f_2))(x).$

Comme x est quelconque, on obtient : $\varphi(f_1 + \lambda.f_2) = \varphi(f_1) + \lambda.\varphi(f_2)$.

On a donc prouvé que φ est un endomorphisme de E.

10)a) $f \in E_n \Leftrightarrow \exists (a_0, \overline{a_1, \dots, a_n}) \in \mathbb{C}^{n+1}, \forall x \in \mathbb{R}, f(x) = (a_0 + a_1 x + \dots a_n x^n) e^{i\alpha x}$

i.e. : $f \in E_n \Leftrightarrow \exists (a_0, a_1, \dots, a_n) \in \mathbb{C}^{n+1}$, $\forall x \in \mathbb{R}$, $f(x) = a_0.f_0(x) + \dots + a_n.f_n(x)$

ou encore : $f \in E_n \Leftrightarrow \exists (a_0, a_1, \dots, a_n) \in \mathbb{C}^{n+1}$, $f = a_0.f_0 + \dots + a_n.f_n$.

On a donc : $E_n = \{a_0.f_0 + \cdots + a_n.f_n / (a_0, a_1, \dots, a_n) \in \mathbb{C}^{n+1}\}$. Autrement dit, E_n est le sous-espace vectoriel de E engendré par la famille $\mathcal{F} = (f_k)_{0 \leqslant k \leqslant n}$.

Montrons que cette famille est libre :

Soit $(a_0, a_1, \dots, a_n) \in \mathbb{C}^{n+1}$ tel que : $a_0.f_0 + \dots + a_n.f_n = [0]$

On a donc : $\forall x \in \mathbb{R}$, $(a_0 + a_1 x + \dots a_n x^n)e^{i\alpha x} = 0$.

Or: $\forall x \in \mathbb{R}$, $e^{i\alpha x} \neq 0$, d'où: $\forall x \in \mathbb{R}$, $a_0 + a_1 x + \dots + a_n x^n = 0$.

Le polynôme $a_0 + a_1X + \cdots + a_nX^n$ possède donc une infinité de racines (tous les réels) : c'est donc le polynôme nul. Par conséquent : $a_0 = a_1 = \cdots = a_n = 0$, ce qui prouve la liberté de \mathcal{F} .

 \mathcal{F} est ainsi une famille libre et génératrice de E_n : \mathcal{F} est une base de E_n .

10)b) E_n est l'ensemble des combinaison linéaires des éléments f_0, f_1, \ldots, f_n . Donc le sous-espace vectoriel somme $E_n + \text{vect}(f_n)$ est l'ensemble des combinaisons linéaires des éléments f_0 , f_1 , ..., f_{n+1} : c'est donc E_{n+1} . Ainsi a-t-on : $E_{n+1} = E_n + \text{vect}(f_n)$.

11)a) Soit $x \in \mathbb{R}$. On a : $\varphi(f_k)(x) = f_k(x + 2\pi) = (x + 2\pi)^k e^{i\alpha(x+2\pi)} = \sum_{p=0}^k \binom{k}{p} (2\pi)^{k-p} x^p e^{2i\pi\alpha} e^{i\alpha x}$

$$\varphi(f_k) = \sum_{p=0}^k {k \choose p} (2\pi)^{k-p} e^{2i\pi\alpha} f_p$$

d'où : $\varphi(f_k) = \sum_{p=0}^k \binom{k}{p} (2\pi)^{k-p} e^{2i\pi\alpha} f_p$ $\mathbf{11)b) \ \, \text{Soit} \, \, (a_0,a_1,\ldots,a_n) \in \mathbb{C}^{n+1}. \ \, \text{Comme} \, \, \varphi \, \, \text{est linéaire} : \, \varphi\left(\sum_{k=0}^n a_k.f_k\right) = \sum_{k=0}^n a_k.\varphi(f_k).$

Or pour tout $k \in [0, n]$, $\varphi(f_k)$ est une combinaison linéaire d'éléments de \mathcal{F} , donc : $\forall k \in [0, n]$, $\varphi(f_k) \in E_n$.

Comme E_n est stable par combinaison linéaire, $\sum\limits_{k=0}^n a_k.\varphi(f_k)$ appartient à E_n . On a donc : $\underline{\varphi(E_n)}\subset E_n$.

12) D'après la question 11a, on a : $\varphi(f_0)=e^{2i\pi\alpha}.f_0$ et pour $k\in \llbracket 1,n \rrbracket$, $\varphi(f_k)=e^{2i\pi\alpha}.f_k+2k\pi e^{2i\pi\alpha}.f_{k-1}+h_k$

avec $h_k \in \text{vect}((f_p)_{0 \leqslant p < k})$. La matrice de m relativement à la base $\mathcal F$ est donc la matrice (d'ordre $n+1 = \text{card}\mathcal F$) suivante:

$$M = e^{2i\pi\alpha} \begin{pmatrix} 1 & 2\pi & * & \dots & * \\ 0 & 1 & 4\pi & \ddots & & \vdots \\ 0 & 0 & 1 & 6\pi & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & * \\ \mathbf{0} & & 0 & 1 & 2n\pi \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$

13) On a : $\det((m)^p) = [\det(m)]^p$. Or $\det(m) = \det(M) = e^{2i\pi(n+1)\alpha}$ comme produit des éléments diagonaux d'une matrice triangulaire d'ordre (n+1). Le résultat cherché est donc : $\det\left((\overline{m})^p\right)=e^{2i\pi(n+1)p\alpha}$

14) Pour $p = \frac{s}{(n+1) \wedge s}$ (avec s dénominateur positif dans l'écriture irréductible de α),

 $(m)^p$ est un endomorphisme de déterminant 1 et c'est la plus petite puissance (non-nulle) de m qui donne cette propriété.

15)a) On a (cf. question 12): $m(f_0) = e^{2i\pi\alpha}f_0$. D'où : $(m - e^{2i\pi\alpha}.id)(f_0) = f_0$ i.e. $\ell(f_0) = [0]$.

15)**b**) Soit $k \in [0, n-1]$.

On a (cf. question 11) : $m(f_{k+1}) = e^{2i\pi\alpha} \cdot f_{k+1} + 2(k+1)\pi e^{2i\pi\alpha} \cdot f_k + h_{k-1} \text{ avec } h_{k-1} \in \text{vect}((f_p)_{0\leqslant p < k})$ d'où $\ell(f_{k+1}) = 2(k+1)\pi e^{2i\pi\alpha}.f_k + h_{k-1}.$

On a donc $\ell(f_{k+1}) \in \text{vect}((f_p)_{0 \leqslant p \leqslant k})$ i.e. $\ell(f_{k+1}) \in E_k$ et la composante de $\ell(f_{k+1})$ selon f_k est : $2(k+1)\pi e^{2i\pi\alpha}$. **15**(c) Or $E_{k+1} = \text{vect}(f_{k+1}) + E_k$. Comme $\ell(f_{k+1}) \in E_k$ et $\ell(E_k) \subset E_k$ (ℓ est un endomorphisme de E_k), par linéarité de ℓ , on a : $\forall k \in [0, n-1], \ \ell(E_{k+1}) \subset E_k$

Posons, pour $k \in [0, n]$, $\mathcal{R}(k) : "\ell^{k+1}(E_k) = \{[0]\}"$.

Or $E_0 = \text{vect}(f_0)$ et $\ell(f_0) = [0]$, donc $\ell(E_0) = \{[0]\}$: $\mathcal{R}(0)$ est vraie.

Suppsons pour un entier fixé $k \in [0, n-1]$, la proposition $\mathcal{R}(k)$ vraie.

On a : $\ell^{k+2}(E_{k+1}) = \ell^{k+1}(\ell(E_{k+1})) \subset \ell^{k+1}(E_k)$.

D'où : $\ell^{k+2}(E_{k+1}) = \{[0]\}$. $\mathcal{R}(k+1)$ est donc vraie.

Par le principe de récurrence, toutes les propositions $\mathcal{R}(k)$ sont vraies pour $k \in [0, n]$.

15)d) Posons, pour $k \in [0, n]$, $\mathcal{P}(k) : "\ell^k(f_k) = k! (2\pi)^k e^{2ik\pi\alpha} f_0$.

 $\ell^0(f_0) = f_0$ et $0! (2\pi)^0 e^{2i\pi\alpha \times 0} = 1$ donc $\mathcal{P}(0)$ est vraie.

Supposons pour un entier k fixé dans [0, n-1] la proposition $\mathcal{P}(k)$ vraie.

Avec les notations précédentes, on a : $\ell(f_{k+1}) = (2(k+1)\pi e^{2i\pi\alpha}) \cdot f_k + h_{k-1}$. D'où, par linéarité de ℓ^k , on obtient : $\ell^{k+1}(f_{k+1}) = (2(k+1)\pi e^{2i\pi\alpha}) \cdot \ell^k(f_k) + \ell^k(h_{k-1})$ On a donc : $\ell^{k+1}(f_k) = \left[2(k+1)\pi e^{2i\pi\alpha} \cdot (k)!(2\pi)^k e^{2ik\pi\alpha}\right] \cdot f_0 + [0] = \left((k+1)!(2\pi)^{k+1} e^{2i(k+1)\pi\alpha}\right) \cdot f_0$. Donc $\mathcal{P}(k+1)$ est vraie. Par le principe de récurrence, toutes les propositions $\mathcal{P}(k)$ sont vraies pour $k \in [0,n]$.

15)e) $\ell^n(f_n)(0) = n! (2\pi)^n e^{2ni\pi\alpha}$ est un nombre complexe non-nul donc $\ell^n(f_n) \neq [0]$.

Par linéarité de ℓ , on obtient : $\ell^{n+1}(f_n) = n! (2\pi)^n e^{2ni\pi\alpha} \cdot \ell(f_0)$ i.e. $\ell^{n+1}(\overline{f_n)} = [0]$.

16) Comme E_n est de dimension n+1 et que la famille $\mathcal B$ est constituée de n+1 vecteurs de E_n , il suffit de prouver que la famille en question est libre :

Soit $(a_0, a_1, \dots, a_n) \in \mathbb{C}^{n+1}$ tel que : $a_0.f_n + a_1.\ell(f_n) + \dots + a_n.\ell^n(f_n) = [0]$

Posons, pour $k \in [0, n]$, $\mathcal{Q}(k)$: " $a_k = 0$ ".

En appliquant l'application ℓ^n à (*), on obtient $: a_0.\ell^n(f_n) = [0]$. Comme $\ell^n(f_n) \neq [0]$, on a $a_0 = 0$.

Donc Q(0) est vraie.

Supposons pour un entier k fixé dans [0, n-1] les k+1 propositions $\mathcal{Q}(0)$, $\mathcal{Q}(1)$, ..., $\mathcal{Q}(k)$ vraies.

On a donc : $\sum_{p=k+1}^n a_p . \ell^p(f_n) = [0]$. On applique $\ell^{n-(k+1)}$ à cette égalité et on trouve :

 $a_{k+1}.\ell^n(f_n)=[0]$ d'où $a_{k+1}=0.$ $\mathcal{Q}(k+1)$ est donc vraie.

Par le principe de récurrence, toutes les propositions $\mathcal{Q}(k)$ sont vraies pour $k \in [0, n]$. Donc la famille \mathcal{B} est libre. Comme elle comporte (n+1) vecteurs, c'est une base de E_n .

$$\textbf{17)} \ \mathsf{Pour} \ k \in \llbracket 0, n-1 \rrbracket, \ \ell(\ell^k(f_n)) = \ell^{k+1}(f_n) \ \mathsf{et} \ \ell(\ell^n(f_n)) = \llbracket 0 \rrbracket. \ \mathsf{D'où} : M_{\mathcal{B}_\alpha}(\ell) = \begin{bmatrix} 0 & 0 & 1 & 0 & \mathbf{0} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \mathbf{0} & \ddots & \ddots & 0 \\ 0 & 0 & \dots & \dots & 0 & 0 \end{bmatrix}.$$

18) Or $m_{\alpha} = \ell + e^{2i\pi\alpha}.id$. Donc : $M_{\mathcal{B}_{\alpha}}(m_{\alpha}) = M_{\mathcal{B}_{\alpha}}(\ell) + e^{2i\pi\alpha}.I_n$, soit :

$$M' = \begin{pmatrix} e^{2i\pi\alpha} & 1 & 0 & \dots & 0 \\ 0 & e^{2i\pi\alpha} & 1 & 0 & \mathbf{0} & \vdots \\ 0 & 0 & e^{2i\pi\alpha} & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \mathbf{0} & & 0 & e^{2i\pi\alpha} & 1 \\ 0 & 0 & \dots & \dots & 0 & e^{2i\pi\alpha} \end{pmatrix}$$

La matrice M' trouvée précédemment appartient à \mathbb{J}_{n+1} .

L'application $\alpha\mapsto M'$ est donc bien à valeurs dans \mathbb{J}_{n+1} . Or pour λ de module 1 et $\alpha=\frac{1}{2\pi}Arg\left(\lambda\right)$, on a : $e^{2i\pi\alpha}=\lambda$ donc $J_{\lambda}=M'$, ce qui montre la <u>surjectivité</u> voulue.

Barème Algèbre

```
question 1:2 points
question 2:2 points
question 3:2 points
question 4:3 points
   soit : Partie 1 : 9 points
```

question 5:1 point

question 6 : 2 points (puissances de N) + 3 points

question 7:3 points question 8:2 points

soit : Partie 2 : 11 points

question 9:2 points

question 10a:1 point +2 points

question 10b: 1 point question 11a: 2 points

question 11b: 1 point question 12:3 points question 13:2 points question 14: 1 point

soit : Partie 3 : 15 points

question 15a: 1 point question 15b: 1 point question 15c: 2 points question 15d: 2 points question 15e : 2 points question 16:2 points question 17:2 points question 18: 1 point question 19:2 points

soit : Partie 4 : 15 points