ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ETIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE ÉCOLE POLYTECHNIQUE (FILIÈRE TSI)

CONCOURS D'ADMISSION 1998

MATHÉMATIQUES

DEUXIÈME ÉPREUVE FILIÈRE PC (Durée de l'épreuve : 3 heures)

L'emploi de la calculette est interdit.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie : MATHÉMATIOUES II - PC.

L'énoncé de cette épreuve, particulière aux candidats de la filière PC, comporte 5 pages.

Si un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Dans tout le problème T est un réel strictement positif (T>0), I est l'intervalle fermé [0,T] (I=[0,T]), q une fonction réelle définie et continue sur l'intervalle I. Soit E(I,q) l'équation différentielle suivante :

$$\mathbf{E}(\mathbf{I}, \mathbf{q}) \qquad \qquad \mathbf{y} \delta + \mathbf{q}(\mathbf{t}) \ \mathbf{y} = 0 \ .$$

Il est admis que la seule solution u de E(I, q), nulle ainsi que sa dérivée en un point c de l'intervalle I(u(c) = 0, u'(c) = 0), est la solution nulle.

Si une fonction complexe u, définie sur l'intervalle I, prend la valeur zéro en un point c de l'intervalle I, le point c est dit être un zéro de u ; il est admis que, puisque l'intervalle I est un compact, le nombre de zéros d'une solution u de E(I, q) autre que la solution nulle, est fini.

Dans tout le problème une solution u de E(I, q) est une fonction réelle, définie sur tout l'intervalle I, de classe C^2 , solution de l'équation différentielle E(I, q) et différente de la fonction nulle dans I.

L'objet du problème est l'étude des zéros d'une solution u de E(I, q).

Première partie

Le but de cette partie est de trouver un encadrement du nombre des zéros d'une solution de E(I, q).

I-1°) Les fonctions g et θ associées à une solution u :

Soit u une solution de E(I, q) autre que la solution nulle.

a. Soit f la fonction complexe définie sur I par la relation :

$$f(t) = u'(t) + i u(t) .$$

Est-ce qu'il existe un réel c pour lequel le nombre complexe f(c) est nul ?

- b. Démontrer qu'il existe deux fonctions θ et g, définies sur I, de classe C^1 , vérifiant les trois conditions suivantes :
 - i) pour tout réel t de l'intervalle I $(0 \le t \le T)$, $u'(t) = g(t) \cos(\theta(t))$;
 - ii) pour tout réel t de l'intervalle I $(0 \le t \le T)$, $u(t) = g(t) \sin(\theta(t))$;
 - iii) le réel $\theta(0)$ appartient à l'intervalle $[0, \pi[: 0 \le \theta(0) < \pi]$.
- c. Exemple : soient ω une constante positive telle qu'il existe un entier p supérieur ou égal à 2 pour lequel le réel ω est compris entre $(p-\frac{1}{2})\pi$ et $(p+\frac{1}{2})\pi$:

$$(p-\frac{1}{2})\pi \le \omega < (p+\frac{1}{2})\pi.$$

L'intervalle I est l'intervalle [0, 1] et la fonction q est constante et égale à ω^2 , $(q(t)=\omega^2)$. Déterminer les deux fonctions θ et g pour une solution u de cette équation différentielle vérifiant les conditions : u(0) = 0, $u'(0) = \omega$. Préciser l'expression de $\theta(t)$ sur les intervalles suivants :

$$\left[0, \frac{\pi}{2 \omega}\right], \left[(k-\frac{1}{2})\frac{\pi}{\omega}, (k+\frac{1}{2})\frac{\pi}{\omega}\right], k=1,..., p-1, \left[(p-\frac{1}{2})\frac{\pi}{\omega}, 1\right].$$

Déterminer les valeurs prises par la fonction θ aux points en lesquels la fonction u est nulle.

d. Démontrer que les dérivées θ' et g' des deux fonctions θ et g, définies à l'alinéa b, vérifient les relations suivantes :

$$\theta'(t) = \cos^2(\theta(t)) + q(t)\,\sin^2(\theta(t)) \;\; ; \;\; g'(t) = \left(1 - q(t)\right)\,g(t)\,\sin(\theta(t))\,\cos(\theta(t)) \;. \label{eq:theta_sigma}$$

I-2°) Suite des zéros d'une solution u :

La solution u considérée est supposée posséder exactement n zéros sur l'intervalle semi-ouvert [0, T]; ces zéros sont notés : $t_1, t_2, ..., t_n$ et vérifient les inégalités

$$0 < t_1 < t_2 < ... < t_n \le T$$
.

- a. Déterminer pour chaque réel t_k , $1 \le k \le n$, une valeur possible du réel $\theta(t_k)$ et en déduire la valeur du réel $\theta'(t_k)$.
- b. Démontrer que la fonction θ est strictement positive sur l'intervalle ouvert $]0, t_1[$. En déduire la valeur du réel $\theta(t_1)$ en utilisant par exemple la valeur du réel $\theta'(t_1)$.

c. Démontrer que la fonction θ est, pour tout entier k compris entre 1 et n-1, $1 \le k \le n-1$, strictement supérieure à $\theta(t_k)$ sur l'intervalle ouvert $J_k=]t_k$, $t_{k+1}[$ en considérant par exemple la fonction ψ_k définie sur l'intervalle fermé $\bar{J}_k=[t_k,\,t_{k+1}]$ par la relation : $\psi_k(t)=\theta(t)-\theta(t_k)$.

En déduire, pour tout entier k compris entre 1 et n-1, $1 \le k \le n-1$, la valeur du réel $\theta(t_k)$.

d. Démontrer les inégalités suivantes : $n \pi \le \theta(T) < (n+1) \pi$.

I-3°) <u>Une évaluation du nombre de zéros</u> :

Soit n le nombre de zéros d'une solution u dans l'intervalle semi-ouvert [0, T].

a. Démontrer que le réel $\theta(T) - T$ s'exprime au moyen de $\theta(0)$ et de l'intégrale :

$$\int_0^T (q(t) - 1) \sin^2(\theta(t)) dt.$$

En déduire que le nombre n de zéros de la solution u vérifie l'inégalité suivante :

$$\int_0^T |\pi n - T| \bullet \pi + \int_0^T |1 - q(t)| dt.$$

b. Exemple : dans cette question la fonction q est définie sur l'intervalle [0, T] par la relation : $q(t) = \frac{\sqrt{t}}{1+\sqrt{t}}$. Donner un équivalent de l'entier n lorsque le réel T croît vers l'infini.

Deuxième partie

Soient q_1 et q_2 deux fonctions réelles définies et continues sur l'intervalle I. La fonction q_1 est supposée majorée par la fonction q_2 : pour tout réel t de l'intervalle I, $q_1(t) \le q_2(t)$.

II-1°) <u>Un résultat préparatoire</u> :

Soient θ_1 et θ_2 deux fonctions réelles définies sur l'intervalle I de classe C^1 telles que :

- les valeurs prises en 0 vérifient l'inégalité $\theta_1(0) \le \theta_2(0)$,
- les dérivées θ_1' et θ_2' vérifient, pour tout réel t de l'intervalle I, les relations :

$$\theta'_i(t) = \cos^2(\theta_i(t)) + q_i(t) \sin^2(\theta_i(t))$$
, l'indice i prend les valeurs 1 et 2.

Soit ϕ la fonction différence de θ_2 et θ_1 : pour tout réel t de l'intervalle I :

$$\varphi(t) = \theta_2(t) - \theta_1(t).$$

Soit h la fonction définie pour tout réel t de l'intervalle I en lequel $\phi(t)$ n'est pas nul par la relation :

$$h(t) = \frac{1}{\theta_2(t) - \theta_1(t)} \left\{ \cos^2(\theta_2(t)) - \cos^2(\theta_1(t)) + q_1(t) \left(\sin^2(\theta_2(t)) - \sin^2(\theta_1(t)) \right) \right\}$$

a. Soit c un zéro de la fonction $\varphi:\varphi(c)=0$, pour lequel existent un réel α strictement positif $(\alpha>0)$ et un intervalle ouvert J_{α} , contenu dans l'intervalle I et défini par la

$$\text{relation} \quad J_{\alpha} = \begin{cases} \]0, \ \alpha[\ \text{si} \ c = 0, \\ \]c - \alpha, \ c + \alpha[, \ \text{si} \ 0 < c < T, \ \text{sur lequel la fonction} \ \phi \ \text{n'est pas nulle}. \\ \]T - \alpha, \ T[, \ \text{si} \ c \ = T. \end{cases}$$

Lorsque le réel t appartient à J_{α} , $\phi(t)$ est différent de 0.

Démontrer que la fonction h se prolonge par continuité en ce point c. Déterminer le prolongement $\overline{h}(c)$ obtenu.

Il est admis qu'il existe une fonction \overline{h} , définie et continue sur l'intervalle I prolongeant la fonction h; c'est-à-dire : pour tout réel t pour lequel le réel $\phi(t)$ n'est pas nul, les réels $\overline{h}(t)$ et h(t) sont égaux.

Établir pour tout réel t de l'intervalle I l'inégalité : $\phi'(t) \ge \overline{h}(t) \phi(t)$.

b. Soit H la primitive de la fonction $-\overline{h}$ définie sur I nulle en 0 (H'(t) = $-\overline{h}$ (t)). Soit k la fonction définie par la relation : pour tout réel t de l'intervalle I,

$$k(t) = \varphi(t).\exp(H(t)).$$

En étudiant cette fonction k par exemple, démontrer la relation : pour tout réel t de l'intervalle I , $\theta_2(t) \ge \theta_1(t)$.

II-2°) Nombre de zéros de deux solutions des équations $E(I, q_1)$ et $E(I, q_2)$:

Par hypothèse l'équation $E(I, q_1)$ a une solution u_1 qui possède n zéros dans l'intervalle semi-ouvert [0, T].

a. Soit u₂ une solution (non nulle) de l'équation E(I, q₂). Démontrer que, si l'une des deux conditions suivantes est vérifiée :

$$i/u_1(0) = 0$$
,

ii/
$$u_1(0) \cdot 0$$
, $u_2(0) \cdot 0$, $\frac{u_2'(0)}{u_2(0)} \le \frac{u_1'(0)}{u_1(0)}$,

le nombre de zéros de la fonction u₂ dans l'intervalle]0, T] est supérieur ou égal à n.

b. En déduire l'existence d'une solution de l'équation E(I, q₂) possédant au moins n zéros dans l'intervalle]0, T].

Troisième partie

Étant donnée une fonction q réelle définie et continue sur l'intervalle I, soit q^+ la fonction définie par la relation : pour tout réel t de l'intervalle I $q^+(t) = \sup(0, q(t))$. Il est admis que la fonction q^+ est continue car $q^+(t) = \frac{1}{2} \left(q(t) + |q(t)| \right)$.

III-1°) <u>Une inégalité sur l'intégrale de la fonction q</u>⁺ :

Dans cette question la fonction q est supposée telle que l'équation E(I, q) admette au moins une solution possédant sur l'intervalle I deux zéros.

a. Démontrer que l'équation différentielle $E(I, q^+)$ a au moins une solution v (non nulle) possédant sur l'intervalle I au moins deux zéros notés α et β ($\alpha < \beta$).

Dans les trois alinéas qui suivent les réels α et β sont les deux zéros de q^+ mis en évidence.

b. Exprimer, pour tout réel t de l'intervalle I, en fonction des réels α , β et v(t), l'expression A(t) définie par la relation ci-dessous :

$$A(t) = (\beta - t) \int_{\alpha}^{t} (s - \alpha) q^{+}(s) \ v(s) \ ds + \ (t - \alpha) \int_{t}^{\beta} (\beta - s) \ q^{+}(s) \ v(s) \ ds \ ,$$

c. Dans cet alinéa la fonction v prend des valeurs positives dans l'intervalle $]\alpha$, $\beta[$. Justifier l'existence d'un réel t_0 , appartenant à l'intervalle fermé $[\alpha, \beta]$ pour lequel la relation, $v(t_0) = \underset{\alpha \leq t \leq \beta}{\text{Max }} v(t)$, a lieu.

Déduire du résultat précédent et de l'alinéa b, la relation :

$$\beta -\alpha \le \int_{\alpha}^{\beta} (\beta - s) (s - \alpha) q^{+}(s) ds.$$

La relation, $\frac{(\beta-s)(s-\alpha)}{\beta-\alpha} \leq \frac{(T-s)\,s}{T}$, pour tout réel s appartenant à l'intervalle

 $[\alpha,\beta]$ est admise. Établir la relation ci-dessous :

$$T \leq \int_0^T \!\! t \; (T-t) \; q^+(t) \; dt \; .$$

d. Démontrer que, si l'équation différentielle E(I, q) admet, comme il a été supposé au début de la question, une solution u présentant au moins deux zéros, l'inégalité établie ci-dessus est valable.

En déduire l'inégalité suivante :
$$\int_0^T q^+(t) dt \ge \frac{4}{T}$$
 .

III-2°) <u>Majoration du nombre de zéros</u>:

Il est supposé que l'équation différentielle E(I, q) admet une solution u (non nulle) qui possède n zéros dans l'intervalle]0, T] $(n \ge 2)$:

$$0 < t_1 < t_2 < \ldots < t_n \leq T$$
 .

L'inégalité :
$$\sum_{k=1}^{n-1} \frac{1}{t_{k+1} - t_k} \ge \frac{(n-1)^2}{T} \text{ est admise.}$$

Donner un majorant de l'entier n à l'aide de l'intégrale de la fonction q⁺ étendue à l'intervalle I.

FIN DU PROBLÈME

FIN DE L'ÉPREUVE