ECOLE POLYTECHNIQUE

OPTION M'

CONCOURS D'ADMISSION 1992

DEUXIÈME COMPOSITION DE MATHÉMATIQUES (4 heures)

•

La partie IV est indépendante des précédentes sauf en ce qui concerne les notations.

On désigne par $M(n, \mathbb{C})$ l'espace vectoriel complexe des matrices à n lignes et n colonnes à coefficients complexes, par F l'espace vectoriel réel constitué de ces mêmes matrices, par I la matrice identité et par a^* l'adjointe d'une matrice a .

On dit que a est hermitienne (resp. antihermitienne, resp. unitaire) si $a^* = a$ (resp. $a^* = -a$, resp. $a^* = I$). On note \mathcal{H} (resp. \mathcal{G} , resp. \mathcal{U}) les ensembles de matrices ainsi définis.

Pour a et b dans M (n, \mathbb{C}) , on pose :

$$[a,b] = ab - ba ,$$

$$\exp a = \sum_{k=0}^{+\infty} \frac{a^k}{k!} ,$$

$$(a|b) = \operatorname{Re} \operatorname{tr} (a^*b) ,$$

où tr désigne la trace.

On rappelle que tr(ab) = tr(ba).

I

- 1. a) Vérifier que $(a, b) \mapsto (a \mid b)$ est un produit scalaire sur l'espace vectoriel réel F.
- b) Montrer que, pour cette structure euclidienne, F est somme directe orthogonale des sous-espaces vectoriels $\mathcal H$ et $\mathcal G$, dont on précisera les dimensions.
 - c) Soient a et b dans F et g dans U. Comparer (a | b) et (ga | gb).
 - 2. On note Π_1 le projecteur orthogonal de F sur \mathcal{G} .

Vérifier que, pour tout couple (a, b) d'éléments de &, on a:

$$\Pi_{I}(ab) = \frac{1}{2}[a,b].$$

- 3. Comparer exp (3) et U. (On admettra que les valeurs propres d'une matrice unitaire sont de module 1 et qu'une telle matrice est unitairement semblable à une matrice diagonale).
- 4. Soit a un élément fixé de F. Déterminer la dérivée de la fonction $t\mapsto \exp$ ta pour t=0.

ECOLE POLYTECHNIQUE (N') HT

П

On appelle courbe tracée sur ${\mathfrak A}$ toute application γ de classe C^* d'un intervalle ouvert J de ${\mathbb R}$ dans F et dont l'image est contenue dans ${\mathfrak A}$.

Soit g un élément de ${\mathfrak A}$. On note $\Gamma_{\rm g}$ l'ensemble des courbes γ tracées sur ${\mathfrak A}$ telles que 0 appartienne à J et γ (0) = g .

On désigne par T_{ϵ} l'ensemble des vecteurs $\gamma'(0)$ lorsque γ décrit Γ_{ϵ} .

- 5. a) Comparer T_I et \mathscr{G} .
- b) Comparer, pour g dans \mathcal{U} , les ensembles T_g et $g\mathcal{G} = \{ ga \mid a \in \mathcal{G} \}$. En déduire que T_g est un sous-espace vectoriel de F.
- 6. On désigne par $\Pi_{\rm g}$ le projecteur orthogonal de F sur $T_{\rm g}$. Vérifier que, pour tout a dans F , on a :

$$\Pi_{\mathfrak{o}}(a) = g \Pi_{\mathfrak{o}}(g^{-1} a)$$
.

7. On fixe une courbe γ tracée sur ^{0}U et on pose, pour tout t dans J, $\alpha(t) = \gamma(t)^{-1} \gamma'(t)$. On considère une application X de classe C^{∞} de J dans F vérifiant :

$$\forall t \in J \quad X(t) \in T_{v(t)}$$
.

On pose alors:

$$(D_{\gamma}X)(t) = \Pi_{\gamma(t)}(X'(t)).$$

Montrer que:

$$(D_{\gamma}X)(t) = \gamma(t)\left(\frac{1}{2}[\alpha(t), A(t)] + A'(t)\right)$$

où A est définie sur J par X (t) = γ (t) A(t).

- 8. Etablir que la fonction $D_{\gamma} \gamma'$ est nulle sur J si et seulement si il existe a dans $\mathscr G$ et g_0 dans $\mathscr U$ tels que γ (t) = (exp ta) g_0 sur J.
- 9. Interpréter géométriquement le résultat obtenu dans le cas où n = 1, et en donner une démonstration directe.

Ш

On pose:

$$\mathcal{G}^{0} = \left\{ a \in \mathcal{G} \mid \text{tr } a = 0 \right\} ,$$

$$\mathcal{U}^{0} = \left\{ g \in \mathcal{U} \mid \text{det } g = 1 \right\} ,$$

et on définit de façon analogue T_g^0 et Π_g^0 pour $g \in \mathcal{U}^0$, ainsi que D_{γ}^0 si γ est une courbe tracée sur \mathcal{U}^0 .

10. Déterminer Π^0_I (ab) pour a et b dans § . On pourra admettre que, pour g dans \mathfrak{A}^0 et a dans F , on a :

$$T_g^0 = g T_I^0 = g \mathcal{G}^0 \quad ,$$

$$\Pi_{g}^{0}(a) = g \Pi_{I}^{0}(g^{-1}a)$$
.

ECOLE POLYTECHNIQUE (H') MI

11. Trouver les courbes γ définies sur J, tracées sur \mathcal{U}^0 et vérifiant $D^0_{\gamma} \gamma' = 0$.

Dans la suite de la partie III on suppose n = 2.

12. On définit une application linéaire injective ϕ de \mathbb{R}^4 dans F par :

$$\phi(x) = \begin{pmatrix} x_1 + i x_2 & x_3 + i x_4 \\ -x_3 + i x_4 & x_1 - i x_2 \end{pmatrix}, \text{ où } x = (x_1, x_2, x_3, x_4),$$

de sorte que \mathcal{U}^0 est l'image par ϕ de la sphère $S = \{x \in \mathbb{R}^4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$.

- a) Calculer $(\phi(x) | \phi(y))$ pour x et y dans \mathbb{R}^4 .
- b) Déterminer ϕ^{-1} $\left(exp \ t \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \right)$.
- 13. Interpréter géométriquement le résultat de la question 11, et en donner une démonstration directe. [On montrera d'abord que, pour tout a de \mathfrak{G}^0 , il existe g dans \mathfrak{U}^0 et t dans \mathbb{R} vérifiant $a = g \begin{pmatrix} it & 0 \\ 0 & -it \end{pmatrix} g^{-1}$].

IV

On suppose encore n=2. On désigne par $\mathcal V$ le sous-espace vectoriel complexe de $M(2,\mathbb C)$ formé des matrices de trace nulle. Pour tout $u\in \mathcal G^0$ on désigne par $\alpha(u)$ l'endomorphisme de $\mathcal V$ défini par :

$$\forall a \in \mathcal{V}$$
 $\alpha(u)(a) = [u, a]$.

- 14. Calculer (α (u) (a) | b) + (a | α (u) (b)) pour a et b dans \mathcal{V} et u dans \mathcal{G}^0 .
- 15. On munit V de la base suivante :

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} .$$

Déterminer dans cette base la matrice de l'endomorphisme α (u), lorsque u est l'une des matrices

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} , \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} .$$

- 16. Trouver les endomorphismes T de $\mathcal V$ qui commutent avec tous les α (u) lorsque u décrit $\mathcal G^0$.
- 17. Déterminer les sous-espaces vectoriels $\mathcal W$ de $\mathcal V$ tels que, pour tout a dans $\mathcal W$ et u dans $\mathcal G^0$, l'élément α (u)(a)appartienne à $\mathcal W$. [On pourra introduire le projecteur orthogonal de $\mathcal V$ sur $\mathcal W$].