X 94 P' Maths 2 page 1

ÉCOLE POLYTECHNIQUE CONCOURS D'ADMISSION 1994

OPTION P'

DEUXIÈME COMPOSITION DE MATHÉMATIQUES (4 heures)

♦

Ce problème est consacré à l'étude d'une surface dans l'espace \mathbb{R}^3 et de certaines courbes tracées sur cette surface.

On désigne par (e_1, e_2, e_3) la base naturelle de \mathbb{R}^3 , par $(\cdot|\cdot)$ son produit scalaire usuel et par $\|\cdot\|$ la norme correspondante. On note \mathcal{R} l'ensemble des couples (u, v) de \mathbb{R}^2 vérifiant $-\frac{\pi}{2} \leqslant u \leqslant \frac{\pi}{2}$ et $-\pi \leqslant v \leqslant \pi$. On définit une application F de \mathcal{R} dans \mathbb{R}^3 par

$$F(u,v) = (F_1(u,v), F_2(u,v), F_3(u,v))$$

οù

 $F_1(u,v) = (2 + \sin u \cos v) \cos 2v$

 $F_2(u,v) = (2 + \sin u \cos v) \sin 2v$

 $F_3(u,v) = \sin u \sin v.$

Enfin on note \mathcal{M} l'ensemble $F(\mathcal{R})$.

Ι

- **1.)** Calculer $\frac{\partial F}{\partial u}$, $\frac{\partial F}{\partial v}$, $\left\| \frac{\partial F}{\partial u} \right\|^2$, $\left\| \frac{\partial F}{\partial v} \right\|^2$, $\left(\frac{\partial F}{\partial u} | \frac{\partial F}{\partial v} \right)$.
- **2.)** Étant donné un point (u, v) de \mathcal{R} , déterminer tous les points (u', v') vérifiant F(u', v') = F(u, v).
- **3.)** Dessiner la projection orthogonale de \mathcal{M} sur le plan (e_1, e_2) .
- **4.)** Déterminer les extrema de la fonction F_3 .
- **5.)** On fixe un réel b dans $[-\pi, \pi]$ et on note φ_b l'application de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans \mathbb{R}^3 définie par $\varphi_b(u) = F(u, b)$.
 - a) Reconnaître la courbe C_b , image de φ_b , ainsi que sa projection orthogonale sur le plan (e_1, e_2) .
 - **b)** Quelle est la longueur de C_b .
- **6.)** Montrer que, si u appartient à $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, la surface \mathcal{M} admet un plan tangent au point F(u, v). Écrire les coordonnées d'un vecteur normal unitaire, que l'on notera N(v), dans le cas où u = 0.

TT

Pour tout réel $a \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ on désigne par ψ_a l'application $v \mapsto F(a, v)$ de $[-\pi, \pi]$ dans \mathbb{R}^3 et par \mathcal{D}_a la courbe image.

- 7.) Pour quels couples (a, a') a-t-on $\mathcal{D}_a = \mathcal{D}_{a'}$?
- **8.**) a) Reconnaître la courbe \mathcal{D}_0 .
 - **b)** Est-il possible de choisir, pour tout point m de \mathcal{D}_0 un vecteur V(m), normal en m à \mathcal{M} , unitaire et dépendant continûment de m?

X 94 P' Maths 2 page 2

- **9.)** Pour quelles valeurs de a la courbe \mathcal{D}_a est-elle plane?
- 10.) Nous dirons qu'un sous-ensemble E d'un espace \mathbb{R}^n est connexe si, pour tout couple (x, y) de E, il existe une application continue f d'un intervalle $[\alpha, \beta]$ dans E vérifiant $f(\alpha) = x$ et $f(\beta) = y$.
 - a) Montrer que le complémentaire de \mathcal{D}_0 dans \mathcal{M} est connexe.
 - b) Montrer que, pour $a \in \left]0, \frac{\pi}{2}\right[$, le complémentaire de \mathcal{D}_a dans \mathcal{M} n'est pas connexe, mais est réunion de deux sous-ensembles connexes, disjoints et non vides. [On pourra introduire la fonction f sur \mathcal{M} définie par f(F(u,v)) = |u| et montrer qu'elle est continue]
- 11.) Écrire la longueur L(a) de \mathcal{D}_a sous la forme d'une intégrale que l'on ne cherchera pas à calculer; puis étudier la continuité de la fonction L.

III

Pour tout point (u, v) de \mathcal{R} , on pose

$$g(u, v) = (F_1(u, v), F_2(u, v)).$$

On fixe un réel v_0 dans $[-\pi, \pi]$.

- 12.) Calculer le jacobien J de g au point $(0, v_0)$.
- 13.) a) Montrer que, si $v_0 \neq \frac{\pi}{2}$, il existe un voisinage de $(0, v_0)$ sur lequel g est injective et admet une application réciproque différentiable h.
 - b) Calculer les deux dérivées partielles de la fonction composée $F_3 \circ h$ au point $g(0, v_0)$.
- 14.) Étudier la position de la surface \mathcal{M} par rapport à son plan tangent au voisinage du point F(0,0).

