ÉCOLE POLYTECHNIQUE

ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES

CONCOURS D'ADMISSION 1999

FILIÈRE PC

DEUXIÈME COMPOSITION DE MATHÉMATIQUES

(Durée : 3 heures)

L'utilisation des calculatrices est autorisée pour cette épreuve.

On attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Le but de ce problème est l'étude d'une forme linéaire sur l'espace vectoriel des fonctions polynomiales réelles.

Première partie

On fixe un entier $n \in \mathbb{N}$ et l'on désigne par E l'espace vectoriel des fonctions polynomiales réelles de degré inférieur ou égal à n. On considère la forme linéaire L sur E définie par

$$\forall P \in E, \quad L(P) = \int_{-1}^{1} P(x)dx.$$

1. Déterminer l'image par L de la fonction polynomiale P telle que $P(x) = \sum_{p=0}^{n} a_p x^p$.

Déterminer la dimension du noyau de L, puis une base de ce noyau.

2. On considère des nombres réels $(x_i)_{0 \le i \le n}$ tels que

$$-1 \le x_0 < x_1 < \ldots < x_i < x_{i+1} < \ldots < x_n \le 1$$
.

a) Montrer que, pour tout $i, 0 \le i \le n$, il existe une fonction polynomiale $P_i \in E$ telle que

$$P_i(x_i) = 1$$
 et
$$P_i(x_j) = 0 \quad \text{pour } j \neq i , \ 0 \leq j \leq n .$$

b) Montrer qu'il existe une unique famille de nombres réels $(\lambda_i)_{0 \le i \le n}$ telle que

$$\forall P \in E$$
 , $L(P) = \sum_{i=0}^{n} \lambda_i P(x_i)$.

3. On suppose que, pour tout i, $0 \le i \le n$, $x_{n-i} = -x_i$. Montrer que $\lambda_{n-i} = \lambda_i$. En déduire que, si n est pair, toute fonction polynomiale P de degré inférieur ou égal à n+1 vérifie

$$\int_{-1}^{1} P(x)dx = \sum_{i=0}^{n} \lambda_i P(x_i) .$$

- **4.** Soit f une fonction réelle de classe C^{n+1} sur l'intervalle [-1,1].
- a) On pose $M_{n+1}=\sup_{x\in[-1,1]}|f^{(n+1)}(x)|$, où $f^{(n+1)}$ désigne la dérivée (n+1)-ième de f. Déterminer des réels positifs α et β tels que

$$\left| \int_{-1}^{1} f(x)dx - \sum_{i=0}^{n} \lambda_{i} f(x_{i}) \right| \leq M_{n+1}(\alpha + \beta \sum_{i=0}^{n} |\lambda_{i}|)$$

où les $(\lambda_i)_{0 \le i \le n}$ sont les nombres réels déterminés à la question 2..

b) On suppose que f est de classe C^{n+2} sur [-1,1], que n est pair et que les points $(x_i)_{0 \le i \le n}$ sont choisis tels que $x_{n-i} = -x_i$, $0 \le i \le n$.

Modifier la majoration précédente en utilisant $M_{n+2} = \sup_{x \in [-1,1]} |f^{(n+2)}(x)|$.

5. On suppose que n = 4 et l'on choisit

$$x_0 = -1$$
, $x_1 = -\frac{1}{2}$, $x_2 = 0$, $x_3 = \frac{1}{2}$, $x_4 = 1$.

- a) Calculer λ_0 , λ_1 , λ_2 , λ_3 , λ_4 .
- **b)** En utilisant le résultat de la question **4.b)**, donner une majoration de $\left| \int_{-1}^{1} e^{(x/4)^2} dx \sum_{i=0}^{4} \lambda_i e^{(x_i/4)^2} \right|$, où les $(\lambda_i)_{0 \le i \le 4}$ sont les nombres trouvés en **a)**.

Deuxième partie

Les notations sont celles de la première partie.

6. Soit N une norme sur E. On pose

$$\mathcal{N}(L) = \sup_{\substack{P \in E \\ N(P) \le 1}} |L(P)|.$$

- a) Justifier l'existence de $\mathcal{N}(L)$ et montrer qu'il existe $Q \in E$ tel que N(Q) = 1 et $|L(Q)| = \mathcal{N}(L)$.
 - b) Montrer que si K est un nombre réel positif tel que

$$\forall P \in E, \quad |L(P)| \le K N(P),$$

alors $\mathcal{N}(L) \leq K$. Montrer que si, de plus, il existe $Q \in E$ tel que N(Q) = 1 et |L(Q)| = K, alors $\mathcal{N}(L) = K$.

7. Pour $P \in E$ tel que $P(x) = \sum_{p=0}^{n} a_p x^p$, on pose

$$N_{\infty}(P) = \sup_{0 \le p \le n} |a_p|$$
 et $N_2(P) = \left(\sum_{p=0}^n (a_p)^2\right)^{\frac{1}{2}}$.

Comparer les normes N_{∞} et N_2 .

- 8. On désigne par $\mathcal{N}_{\infty}(L)$ et $\mathcal{N}_{2}(L)$ les nombres $\mathcal{N}(L)$ définis à la question 6., quand on choisit pour N respectivement N_{∞} et N_{2} .
 - a) Trouver $Q_{\infty} \in E$ tel que $N_{\infty}(Q_{\infty}) = 1$ et $|L(Q_{\infty})| = \mathcal{N}_{\infty}(L)$.
 - **b)** Trouver $Q_2 \in E$ tel que $N_2(Q_2) = 1$ et $|L(Q_2)| = \mathcal{N}_2(L)$.

Troisième partie

Soit F l'espace vectoriel des fonctions polynomiales réelles de degré quelconque.

Pour $P \in F$, de degré d(P), définie par $P(x) = \sum_{p=0}^{d(P)} a_p x^p$, on pose

$$N_{\infty}(P) = \sup_{0 \le p \le d(P)} |a_p| \text{ et } N_2(P) = \left(\sum_{p=0}^{d(P)} (a_p)^2\right)^{1/2}$$

et l'on définit ainsi des normes sur F [par convention, $N_{\infty}(0) = N_2(0) = 0$].

Pour $P \in F$, on pose encore $L(P) = \int_{-1}^{1} P(x) dx$.

9.a) Trouver une suite $(P_k)_{k\in\mathbb{N}}$ d'éléments de F telle que $\forall k\in\mathbb{N}, N_\infty(P_k)=1$ et $\lim_{k\to+\infty}L(P_k)=+\infty$.

- b) L'application linéaire L est-elle continue?
- **10.a)** Montrer que $\sup_{\substack{P \in F \\ N_2(P) \leq 1}} |L(P)|$ existe. On désigne ce nombre par |||L|||.
- **b)** Existe-t-il une fonction polynomiale $Q \in F$ telle que $N_2(Q) = 1$ et |L(Q)| = |||L|||?

* *

*