CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

Baccalauréat général Série S – Session 2010 Eléments de correction

Il est rappelé que ce document est à l'usage exclusif des membres des jurys. La règle de confidentialité relative aux commissions d'entente et aux travaux des jurys s'applique à son contenu.

Outre les compétences de base (C1: restituer et mobiliser des connaissances, C2:appliquer une méthode), le sujet permet d'évaluer des compétences évoluées parmi les suivantes :

C3: Prendre des initiatives, choisir un modèle, émettre une conjecture, expérimenter

C4: Raisonner, démontrer, élaborer une démarche

C5: Évaluer, critiquer un résultat, vérifier la validité d'un résultat ou d'une méthode.

Exercice 1: (6 points) Commun à tous les candidats

	Consignes de correction	barème
A1. Montrer que la fonction u définie sur l'ensemble des		
nombres réels \mathbb{R} par $u(x) = xe^{-x}$ est une solution de		
l'équation différentielle (E).		
A2. Résoudre l'équation différentielle (E').		
A3. équivalence à démontrer		
A4. En déduire toutes les solutions de l'équation différentielle (E).		
A5. Déterminer l'unique solution g de l'équation différentielle (E) telle que $g(0) = 2$.		
B1. Montrer que la fonction f_k admet un maximum en		
x=1-k.		
B2. Montrer que le point M_k appartient à la courbe Γ		
d'équation $y = e^{-x}$		
B3.a) Identifier les courbes et les nommer sur l'annexe		
B3.b déterminer la valeur du nombre réel <i>k</i> correspondante ainsi que l'unité graphique sur chacun des axes, en expliquant la démarche		
B4. Calculer $\int_{0}^{2} (x+2)e^{-x} dx$.		
Donner une interprétation graphique de cette intégrale.		

Exercice 2: (5 points) Commun à tous les candidats

	Consignes de correction	Barème
1. ROC		
2.a) (u_n) et (v_n) sont adjacentes		
2.b (u_n) et (v_n) ont pour limite $+\infty$. Elles ne sont pas		
adjacentes.		
2.c) (u_n) et (v_n) ont pour limite 1 et ne sont pas adjacentes.		
3. Existe-t-il une valeur de <i>a</i> telle que les suites soient adjacentes		

Exercice 3: (4 points) Commun à tous les candidats QCM

1.
$$\frac{21}{40}$$

1.
$$\frac{21}{40}$$
 2. $\binom{5}{2} \times \left(\frac{3}{10}\right)^3 \times \left(\frac{7}{10}\right)^2$ 3. $\frac{14}{23}$ 4. $e^{-\lambda} - e^{-3\lambda}$

3.
$$\frac{14}{23}$$

4.
$$e^{-\lambda} - e^{-3\lambda}$$

Exercice 4: (5 points) (candidats n'ayant pas choisi l'enseignement de spécialité)

	Consignes de correction	Barème
1. a) Démontrer que $\alpha^2 - 4\alpha = 2\overline{\alpha} - 8$.	·	
1. b) Démontrer que les points B et C appartiennent au cercle $\mathscr C$		
2. a) Construire sur la figure le point E		
2. b) Justifier que le point E a pour affixe $z_E = \alpha e^{i\theta}$.		
3. a) Justifier que le point F a pour affixe $z_F = \frac{\alpha}{2} + e^{i\theta}$.		
3. b) Démontrer que $\frac{z_G - 2}{z_F - 2} = \frac{\alpha}{2}$. En déduire la nature du		
triangle AFG		
4. Compléter le tableau de variation et conclure		

Exercice 4: (5 points) (candidats ayant choisi l'enseignement de spécialité)

	Consignes de correction	Barème
1.a) Déterminer les images respectives du point A et du point		
Ω		
1.b) déduire la nature et les éléments caractéristiques de la		
transformation		
1.c) image par la transformation T du cercle (\mathcal{C})		·
2.a) Construire le point A'		
2.b) Déterminer le module et un argument de $\frac{z'-2}{z}$.		
3.a) Préciser la nature et les éléments caractéristiques de la		
transformation r		
3.b) Déterminer les éléments caractéristiques de la similitude		
directe		
3.c) Quel est le lieu géométrique du point M_1		