Partie I : Résultats préliminaires.

- 1) <u>Etude de f :</u>
 - a) Etudier la fonction f puis tracer sa courbe représentative (C_f) .
 - b) $\left(C_{f}
 ight)$ possède-t-elle des points d'inflexion ? Si oui, les déterminer.
 - c) Donner le développement limité à l'ordre 8 en 0 de f .
 - d) Donner les valeurs de $f^{(k)}(0)$ pour $k \in \{1,...,8\}$. Enoncer avec soin le ou les théorème(s) utilisé(s).
- 2) Etude de $(a_n)_{n \in \mathbb{N}}$:
 - a) Etudier la monotonie de la suite $(a_n)_{n\in\mathbb{N}}$.
 - b) La suite $(a_n)_{n\in\mathbb{N}}$ est-elle une suite convergente ?
 - c) Montrer que pour tout $n \in \mathbb{N}$, $a_n = \binom{2n}{n} \left(\frac{1}{2}\right)^{2n}$.
 - d) Quel est le rayon de convergence de la série entière $\sum_{n\geq 0} a_n z^n$?
- 3) Etude d'une intégrale impropre :
 - a) Justifier l'existence de F . Enoncer avec précision le théorème utilisé.
 - b) Justifier l'existence de lpha .
 - c) Montrer que $\int_{1}^{+\infty} \frac{dt}{\sqrt{1+t^4}} = \int_{0}^{1} \frac{dt}{\sqrt{1+t^4}}$ (justifier avec soin).
 - d) En déduire que $\alpha = 2F(1)$.
 - e) i) Montrer que la série de terme général f(n) converge.
 - ii) Montrer que $\alpha \le \sum_{n=0}^{+\infty} f(n) \le \alpha + 1$.

Partie II : Intégrales de Wallis.

Dans cette partie si $n \in \mathbb{N}$, I_n désigne l'intégrale suivante : $I_n = \int_0^{\pi} \cos^n t \ dt$.

- 1) Calculer I_0 et I_1 .
- 2) Montrer que pour tout $n \in \mathbb{N}$, $I_n = \int_0^{\pi} \sin^n t \ dt$.
- 3) Montrer que pour tout $n \in \mathbb{N}$, $I_n > 0$.
- 4) Montrer que $(I_n)_{n\in\mathbb{N}}$ est une suite décroissante et convergente.
- 5) Montrer que pour tout $n \in \mathbb{N}$ avec $n \ge 2$, $nI_n = (n-1)I_{n-2}$ (utiliser une intégration par parties).
- 6) Montrer que la suite $((n+1)I_{n+1}I_n)_{n\in\mathbb{N}}$ est constante (donner sa valeur).
- 7) Montrer que pour tout $n \in \mathbb{N}$, $I_{2n} = \frac{\pi}{2}a_n$ et $I_{2n+1} = \frac{1}{(2n+1)a_n}$
- 8) a) Montrer que pour tout $n \in \mathbb{N}$ avec $n \ge 2$, $1 \le \frac{I_{n-1}}{I_n} \le \frac{I_{n-2}}{I_n}$.
 - b) Calculer la limite des suites de terme général : $\frac{I_{n-2}}{I_n}$, $\frac{I_{n-1}}{I_n}$ et nI_n^2 .
 - c) Donner un équivalent de I_n quand n tend vers $+\infty$.

- 9) a) Montrer que pour tout $n \in \mathbb{N}^+$, $\frac{1}{\sqrt{\pi}\sqrt{n+1}} \le a_n \le \frac{1}{\sqrt{\pi}\sqrt{n}}$.
- b) En déduire que le terme a_n est équivalent à $\frac{1}{\sqrt{\pi}\sqrt{n}}$ quand n tend vers $+\infty$.
- c) Donner la nature des séries de terme général :

- i) a_n ii) $\frac{a_n}{4n+1}$ iii) $(-1)^n a_n$ iv) $\frac{(-1)^n a_n}{4n+1}$

Partie III : Etude de F.

On note (C) la courbe représentative de F dans un repère (O, \vec{i}, \vec{j}) orthonormé du plan.

1) Etude globale de F :

- a)Montrer que F est de classe C^{∞} sur \mathbb{R} .
- b)Donner le sens de variation de F sur \mathbb{R} .
- c) Montrer que F est impaire.
- d)Montrer que pour tout $x \ge 1$, $F(x) F(1) \le 1 \frac{1}{x}$.
- e)Enoncer le théorème concernant l'existence de la limite en +∞ d'une fonction croissante définie sur $[A, + \infty]$ (où $A \in \mathbb{R}$).
- f) Déduire des 2 questions précédentes que F a une limite finie en $+\infty$.

2) Etude locale de F:

- a)Donner le développement limité de F en 0 à l'ordre 9. Enoncer le théorème utilisé.
- b)Donner une équation de la tangente T à (C) au point d'abscisse 0 et préciser la position de (C) par rapport à T au voisinage de 0.
- c) La courbe (C) possède-t-elle des points d'inflexion? Si oui, les déterminer.

3) Lien avec α :

- a)Montrer que pour tout x > 0, $F(x) F(1) = F(1) F\left(\frac{1}{x}\right)$.
- b)En déduire que la limite de F en $+\infty$ est égale à 2F(1).
- c) En utilisant la partie I)3), montrer que la limite de F en $+\infty$ est α et retrouver le résultat de III)3)b).

4) Tracé de (C):

- a) Dresser le tableau de variations de F.
- b)Donner une équation de la tangente à (C) au point d'abscisse 1.
- c) Tracer (C) en tenant compte des différents points de l'étude précédente. Pour le tracé, prendre $\alpha \approx 1.85$.

5) Quelques applications de F:

- a) Résoudre l'équation différentielle (E) : $(1+t^4)y'+2t^3y=1$.
- b)On considère la courbe paramétrée : (Γ) $\begin{cases} x(t) = F(t) \\ y(t) = \frac{1}{4} \end{cases}$
 - i) Montrer que l'étude de (Γ) peut être restreinte à $]0,+\infty[$. Préciser alors les symétries de (Γ) .
 - ii) Dresser le tableau de variations de (Γ) .
 - iii) Déterminer de manière précise le comportement de (Γ) quand t tend vers $+\infty$.
 - iv) Tracer la courbe (Γ).

c) On considère la fonction
$$\varphi : \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto \begin{cases} \frac{x^2 F(xy)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

i) Montrer pour tout
$$(x, y) \in \mathbb{R}^2$$
, les trois inégalités suivantes : $|x| \le \sqrt{x^2 + y^2}$ $0 \le f(xy) \le 1$ $|F(xy)| \le |xy|$

ii) Justifier que
$$\varphi$$
 est continue sur \mathbb{R}^2 .

iii) Calculer pour
$$(x,y) \neq (0,0)$$
: $\frac{\partial \varphi}{\partial x}(x,y)$ et $\frac{\partial \varphi}{\partial y}(x,y)$.

iv)
$$\varphi$$
 est-elle de classe C^1 sur \mathbb{R}^2 ?

Partie IV : Développement en série entière de F et utilisation.

On considère la série entière $\sum_{n>0} \frac{(-1)^n a_n}{4n+1} x^{4n+1}$, on note h(x) sa somme.

On rappelle le résultat de la question II)9)b) : a_n est équivalent à $\frac{1}{\sqrt{\pi}\sqrt{n}}$.

1) Etude de h:

- a) Donner le rayon de convergence de la série entière définissant h.
- b) Montrer que h(1) et h(-1) existent.
- c) Enoncer le théorème de continuité de la somme d'une série entière de rayon R>0 sur le segment [0,R] et en déduire que *h* est continue sur [-1,1].
- d) i) Montrer que la série de fonctions $\sum_{n\geq 0} \frac{(-1)^n a_n}{4n+1} x^{4n+1}$ est normalement convergente sur [-1,1].
 - ii) Retrouver le résultat de IV)1)c). Enoncer le théorème utilisé.

2) <u>Développement en série entière de</u> *F* <u>:</u>

- a) Rappeler, si $\beta \in \mathbb{R}$, le développement en série entière de la fonction b définie par $b(x) = (1+x)^{\beta}$. Sur quel intervalle ce développement est-il valable ?
- b) En déduire que f puis F sont développables en série entière au voisinage de 0 et préciser leur développement en série entière.
- c) Montrer que pour tout $x \in [-1,1]$: F(x) = h(x) (on pourra utiliser IV)1)c)).

d) En déduire que
$$\alpha = 2\sum_{n=0}^{+\infty} \frac{(-1)^n a_n}{4n+1}$$
.

3) Valeur approchée de α :

Dans cette question, si $p \in \mathbb{N}$, S_p désigne la p^{ième} somme partielle de la série

$$\sum_{n\geq 0} \frac{(-1)^n a_n}{4n+1} \text{ soit } S_p = \sum_{n=0}^p \frac{(-1)^n a_n}{4n+1}.$$

a) Montrer que pour tout
$$p \in \mathbb{N}$$
, $\left| \alpha - 2S_p \right| \le \frac{2}{4p+5} a_{p+1}$.

b) Montrer que pour tout
$$p \in \mathbb{N}$$
, $\left| \alpha - 2S_p \right| \le \frac{1}{2\sqrt{\pi}} \frac{1}{(p+1)^{\frac{3}{2}}}$ (utiliser II)9)a)).

c) En déduire un entier p tel que $2S_p$ soit une valeur approchée de α à 10^{-6} près.

4