ULC 221 J.2028

SESSION 2002

Filière PC

(Epreuve commune aux ENS de Paris, Lyon et Cachan)

MATHEMATIQUES

DUREE: 4 heures

L'usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d'accompagnement, est autorisé. Cependant, une seule calculatrice à la fois est admise sur la table ou le poste de travail, et aucun échange n'est autorisé entre les candidats.

Tournez la page S.V.P.

Avertissement. On attachera la plus grande importance à la clarté et à la précision des démonstrations, ainsi qu'à la présentation des copies.

Dans ce problème, $q: \mathbb{R} \to \mathbb{R}$ désigne une fonction continue, 2π -périodique. On examine certaines propriétés des solutions de l'équation différentielle

$$(H) \qquad \frac{d^2u}{dt^2} + qu = 0.$$

Nous étudions ensuite comment ces propriétés varient dans le cas de l'équation

$$(H\lambda) \qquad \frac{d^2u}{dt^2} + (q+\lambda)u = 0,$$

paramétrée par $\lambda \in \mathbb{R}$. Par "solution de (H) ou de (H λ)", nous entendons des solutions de classe \mathcal{C}^2 , définies sur \mathbb{R} , à valeurs réelles ou complexes. Nous dirons qu'une solution u de (H) ou de (H λ) n'est pas nulle s'il existe t tel que $u(t) \neq 0$.

Propriétés élémentaires

On rappelle que, d'après le cours, il existe une et une seule solution u de $(H\lambda)$ qui prenne, ainsi que sa dérivée, des valeurs prescrites a et b en un point donné $x_0: u(x_0) = a, u'(x_0) = b$. Utilisant ce résultat, nous notons u_0, u_1 les solutions de (H) définies par les conditions

$$u_0(0) = u_1'(0) = 1, \quad u_0'(0) = u_1(0) = 0,$$

et nous formons la matrice

$$M = \begin{pmatrix} u_0(2\pi) & u_1(2\pi) \\ u'_0(2\pi) & u'_1(2\pi) \end{pmatrix},$$

dont la trace $u_0(2\pi) + u_1'(2\pi)$ est notée D.

Q1. Montrer que $u_0u_1' - u_0'u_1$ est une fonction constante, égale à un.

Q2. Montrer que, pour toute solution de (H), à valeurs complexes, on a

$$\left(\begin{array}{c} u(2\pi) \\ u'(2\pi) \end{array}\right) = M \left(\begin{array}{c} u(0) \\ u'(0) \end{array}\right).$$

Plus généralement, donner une expression de

$$\left(\begin{array}{c} u(2k\pi) \\ u'(2k\pi) \end{array}\right)$$

lorsque $k \in \mathbb{Z}$.

Q3.

- 1. Lorsque $|D| \neq 2$, montrer que M est diagonalisable.
- 2. Plus généralement, discuter la position des valeurs propres de M dans le plan complexe, suivant la valeur de D^2 4.

Q4.

- 1. Soit $U \in \mathbb{C}^2$ un vecteur. Montrer qu'il existe une et une seule application $k \mapsto X^k$, définie sur \mathbb{Z} (on dira "une suite") et à valeurs dans \mathbb{C}^2 , vérifiant $X^{k+1} = MX^k$ et $X^0 = U$.
- 2. Cas |D| < 2. Montrer qu'une telle suite est toujours bornée.
- 3. Cas |D| > 2. Montrer qu'une telle suite, lorsque $U \neq 0$, ne peut pas être bornée.
- 4. Cas |D|=2. Montrer qu'au moins une telle suite, avec $U\neq 0$, est bornée et que, pour que toutes ces suites soient bornées, il faut et il suffit que M soit égale à $\pm I_2$ (I_2 est la matrice identité).

Q5. On suppose que |D| < 2.

- 1. Montrer qu'il existe une solution non nulle de (H) de la forme $t \mapsto e^{i\alpha t}w(t)$, où w est une fonction 2π -périodique et $\alpha \in]0,1/2[$.
- 2. En déduire que toutes les solutions de (H) sont bornées.

Nombre de zéros des solutions réelles de (H)

Nous dirons qu'un nombre réel t est un zéro d'une fonction $f: \mathbb{R} \to \mathbb{R}$ si f(t) = 0. Les solutions à valeurs réelles sont appelées solutions réelles.

Q6. Soient $y_0, y_1 : \mathbb{R} \to \mathbb{R}$ deux solutions réelles de (H), linéairement indépendantes. Nous notons y la fonction $y_0 + iy_1$ (avec $i = \sqrt{-1}$). C'est une autre solution, à valeurs complexes.

- 1. Montrer que y ne s'annule en aucun point de IR.
- 2. En déduire qu'il existe des fonctions $\rho > 0$ et ϕ , réelles et de classe \mathcal{C}^2 , telles que $y = \rho e^{i\phi}$.
- 3. Montrer que $\rho^2 \phi'$ est une constante non nulle.
- 4. Montrer que la forme générale des solutions à valeurs réelles de (H) est

$$u = A\rho\cos(\phi - \phi_0), \quad A \in \mathbb{R}, \ \phi_0 \in \mathbb{R}.$$

Tournez la page S.V.P.

- 5. En déduire que, si l'une des solutions réelles non nulles de (H) s'annule une infinité de fois, alors toutes les solutions réelles de (H) en font autant.
- Q7. On suppose dans cette question que |D| < 2. Montrer que toute solution réelle de (H) s'annule une infinité de fois. Pour cela, on considèrera une solution non nulle de la forme $y = e^{i\alpha t}w(t)$, où w est une fonction 2π -périodique (voir la question Q5). On notera y_0 et y_1 ses parties réelle et imaginaire et on utilisera la question Q6.
- Q8. On suppose qu'il existe une solution réelle de (H) qui ne s'annule qu'en un nombre fini de points.
 - 1. Montrer qu'il existe une solution réelle ϕ de (H), et un nombre réel $\beta>0$, tels que
 - (a) $\phi(t+2\pi) = \beta\phi(t)$ pour tout $t \in \mathbb{R}$,
 - (b) $\phi(t) > 0$ pour tout $t \in \mathbb{R}$.
 - 2. Montrer que $D \geq 2$.
 - 3. On note $\sigma = \log \phi$. Calculer $\sigma'' + (\sigma')^2 + q$ et vérifier que σ' est 2π -périodique. En déduire que

$$\int_0^{2\pi} q(t) dt \le 0.$$

Dans quel cas a-t-on l'égalité?

4. Montrer que pour toute fonction $w: \mathbb{R} \to \mathbb{R}$, 2π -périodique et de classe \mathcal{C}^2 , on a

$$\int_0^{2\pi} q w^2 dt \le \int_0^{2\pi} (w')^2 dt.$$

A quelle condition sur w a-t-on l'égalité ?

- **Q9.** On suppose qu'il existe une solution non nulle w, réelle et 2π -périodique, de (H). Montrer que si $\lambda > 0$, toutes les solutions réelles de (H λ) s'annulent une infinité de fois.
 - Q10. Montrer l'équivalence des propositions suivantes :
 - Il existe une solution de (H) qui ne s'annule qu'en un nombre fini de points,
 - toute solution non nulle de (H) ne s'annule qu'en un nombre fini de points.
- **Q11.** On suppose que les solutions réelles non nulles de (H) ne s'annulent qu'en un nombre fini de points. Soit ϕ comme en Q8.1. Etant donné un nombre $\lambda < 0$, on désigne par ψ la solution de (H λ) qui satisfait les mêmes conditions initiales que ϕ :

$$\psi(0) = \phi(0), \quad \psi'(0) = \phi'(0).$$

1. Montrer l'identité

$$\phi \psi' - \phi' \psi + \lambda \int_0^t \phi \psi \, dx = 0.$$

- 2. Soit $t_0 \in \mathbb{R}^*$ un zéro de ψ , tel que ψ ne s'annule pas entre 0 et t_0 . On souhaite établir une contradiction. Au moyen de l'identité ci-dessus, montrer que $t_0 \psi'(t_0)$ est strictement positif. Puis, considérant les variations de ψ , montrer que ce nombre est négatif.
- 3. En déduire que les solutions réelles non nulles de $(H\lambda)$ ne s'annulent qu'un nombre fini de fois.
- **Q12.** On suppose que q(t) < 0 pour tout $t \in \mathbb{R}$. Montrer par un argument de convexité que les solutions réelles non nulles de (H) s'annulent au plus une fois.

Q13.

- 1. Finalement, montrer qu'il existe un nombre réel λ_0 , unique, satisfaisant les propriétés suivantes :
 - (a) pour $\lambda < \lambda_0$, les solutions réelles non nulles de (H λ) ne s'annulent qu'un nombre fini de fois
 - (b) pour $\lambda > \lambda_0$, les solutions réelles de $(H\lambda)$ s'annulent une infinité de fois,
- 2. Montrer les inégalités

$$-\max_{t\in[0,2\pi]}q(t) \le \lambda_0 \le -\frac{1}{2\pi} \int_0^{2\pi} q(t) dt.$$

Etude de $(H\lambda_0)$

Etant donné $\lambda \in \mathbb{R}$, on désigne par $u_{0\lambda}$ et $u_{1\lambda}$ les solutions de $(H\lambda)$ qui vérifient

$$u_{0\lambda}(0) = u'_{1\lambda}(0) = 1, \quad u'_{0\lambda}(0) = u_{1\lambda}(0) = 0,$$

et nous formons la matrice

$$M = \begin{pmatrix} u_{0\lambda}(2\pi) & u_{1\lambda}(2\pi) \\ u'_{0\lambda}(2\pi) & u'_{1\lambda}(2\pi) \end{pmatrix},$$

dont la trace $u_{0\lambda}(2\pi) + u'_{1\lambda}(2\pi)$ est notée $D(\lambda)$. On admet que les applications $(\lambda, t) \mapsto u_{j\lambda}(t)$ et $(\lambda, t) \mapsto u'_{j\lambda}(t)$ sont continues, pour j = 1, 2.

Q14. Montrer que $D(\lambda_0) \geq 2$.

- Q15. D'après les questions Q8 et Q13, on sait que, pour $\lambda < \lambda_0$, il existe une solution ϕ_{λ} de $(H\lambda)$, réelle, strictement positive, et un nombre $\beta(\lambda) > 0$ tel que $\phi_{\lambda}(t + 2\pi) = \beta(\lambda)\phi_{\lambda}(t)$ pour tout $t \in \mathbb{R}$.
 - 1. Montrer qu'on peut choisir ϕ_{λ} sous la forme

$$a(\lambda)u_{0\lambda} + b(\lambda)u_{1\lambda}$$

avec
$$|a(\lambda) + ib(\lambda)| = 1$$
.

2. Montrer qu'il existe une suite $(\mu_n)_{n\in\mathbb{N}}$, avec $\mu_n < \lambda_0$, convergente vers λ_0 , telle que $a(\mu_n) + ib(\mu_n)$ converge vers une limite, qu'on notera $a_0 + ib_0$.

- 3. Définissons $\psi = a_0 u_{0\lambda_0} + b_0 u_{1\lambda_0}$. Vérifier que ψ est une solution non nulle de $(H\lambda_0)$ dont les valeurs sont strictement positives.
- 4. Montrer qu'il existe un nombre réel $\beta_0 > 0$ tel que $\psi(t + 2\pi) = \beta_0 \psi(t)$ pour tout $t \in \mathbb{R}$.

Q16. On garde les notations de la question précédente, et on suppose que $\beta_0 \neq 1$.

- 1. Montrer qu'il existe un intervalle ouvert I, contenant λ_0 , et une application continue $\beta: I \to I\!\!R$, telle que $\beta(\lambda)^2 D(\lambda)\beta(\lambda) + 1 = 0$ et $\beta(\lambda_0) = \beta_0$.
- 2. Vérifier que $M(\lambda_0) \neq \beta_0 I_2$. Construire alors une application $\lambda \mapsto (A(\lambda), B(\lambda))$, de I dans \mathbb{R}^2 , telle que

 $\left(\begin{array}{c} A(\lambda) \\ B(\lambda) \end{array}\right)$

soit un vecteur propre de $M(\lambda)$, pour la valeur propre $\beta(\lambda)$.

- 3. Considérons, pour $\lambda > \lambda_0$, $\lambda \in I$, la solution $\phi^{\lambda} = A(\lambda)u_{0\lambda} + B(\lambda)u_{1\lambda}$ de (H λ). Montrer que ϕ^{λ} s'annule au moins une fois dans $[0, 2\pi]$.
- **Q17.** En déduire que $\beta_0 = 1$. Qu'en déduisez-vous sur $D(\lambda_0)$?
- Q18. Montrer que, si

$$\lambda_0 = -\frac{1}{2\pi} \int_0^{2\pi} q(t) dt,$$

alors q est une fonction constante.