99 MATH. II - MP

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ETIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE ÉCOLE POLYTECHNIQUE (FILIÈRE TSI)

CONCOURS D'ADMISSION 1999

MATHÉMATIQUES

DEUXIÈME ÉPREUVE FILIÈRE MP

(Durée de l'épreuve : 4 heures)

L'emploi de la calculette est interdit.

Sujet mis à la disposition du concours E.N.T.P.E. .

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie : MATHÉMATIQUES II - MP.

L'énoncé de cette épreuve, particulière aux candidats de la filière MP, comporte 4 pages.

Si un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Soit \mathcal{E} l'espace vectoriel complexe des fonctions complexes définies et continues sur le segment $I = [0, \pi]$. Soit $\|.\|_{-}$ l'application qui, à toute fonction f de \mathcal{E} , associe le maximum du module de la fonction f sur l'intervalle I:

$$||f||_{-} = \max_{0 \le x \le \pi} |f(x)|.$$

Il est connu que l'espace $(\mathcal{E}, \|.\|)$ est un espace vectoriel normé.

Soit \mathcal{F} le sous-ensemble des fonctions f, continûment dérivables, qui appartiennent à l'espace vectoriel \mathcal{E} , qui prennent la valeur 0 aux points 0 et π et dont l'intégrale du carré du module de la fonction dérivée f' est majorée par 1.

$$\mathcal{F} = \{ f \mid f \in E, f \in C^1(I), \int_0^{\pi} |f'(x)|^2 dx - 1, f(0) = f(\pi) = 0 \}.$$

Soit G l'ensemble des fonctions complexes f définies sur le segment $I = [0, \pi]$ possédant la propriété : il existe une suite complexe $(b_n)_{n-1}$, telle que

- la série de terme général $c_n = n^2 |b_n|^2$, n_1 , est convergente et sa somme est majorée par $2/\pi$,
- pour tout x réel de l'intervalle I, la série trigonométrique de terme général $b_n \sin(nx)$, n_1 , est convergente et sa somme est égale à f(x).

 $G = \{ f | f \text{ est définie sur I, il existe une suite de nombres complexes } b_n, n_1 \text{ telle que : }$

$$\sum_{n=1}^{\infty} n^2 |b_n|^2 = \frac{2}{\pi}, \text{ pour tout réel } x \text{ de I, } f(x) = \sum_{n=1}^{\infty} b_n \sin(nx)$$

Le but du problème est d'étudier d'une part les relations existant entre les ensembles \mathcal{F} et \mathcal{G} , d'autre part leurs propriétés.

Première partie

Résultats préliminaires.

I-1°) Convergence de la série trigonométrique b_n sin(nx), n _ 1 :

Soit une suite complexe $(b_n)_{n_1}$ telle que la série de terme général $n^2 |b_n|^2$, n_1 , soit convergente. Démontrer que la série de terme général b_n , n_1 , est absolument convergente en utilisant par exemple l'inégalité :

pour deux réels positifs a et b, $2ab_{-}(a^2 + b^2)$.

En déduire que l'ensemble G est un sous-ensemble de l'espace vectoriel \mathcal{E} ; $G \subset \mathcal{E}$.

I-2°) Un exemple de fonction appartenant à l'ensemble G:

a. En admettant le résultat classique : la somme de la série de terme général $\frac{1}{n^2}$, n_1 , est égale à $\frac{\pi^2}{6}$, calculer la somme S de la série de terme général

$$\frac{1}{(2k+1)^2}$$
, k_0:
$$S = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$$
.

b. Soit h la fonction définie sur l'intervalle I par la relation : $h(x) = min(x, \pi - x)$. Soit h la fonction définie sur la droite réelle, impaire, périodique de période 2π , de restriction à l'intervalle I égale à la fonction h :

pour tout réel x, h
$$(-x) = -h(x)$$
, h $(x+2\pi) = h(x)$, pour tout réel x de l'intervalle I, h $(x) = h(x)$.

pour tout reer A de l'intervaire i, ir (A) - in(A).

i/ Montrer que la fonction h est continue ; déterminer sa série de Fourier ;

ii/ Quelle est la somme de la série de Fourier de la fonction h ? Retrouver la valeur de S calculée ci-dessus.

iii/ En déduire que la fonction k : $x - \frac{1}{\sqrt{\pi}} h(x)$ appartient à l'ensemble G.

I-3°) Égalité entre une fonction périodique et la somme de sa série de Fourier :

Étant données deux fonctions complexes f et g, définies et continues sur la droite réelle, 2π -périodiques, il est admis que, si les coefficients de Fourier des fonctions f et g sont égaux, les deux fonctions f et g sont égales : l'égalité, pour tout entier relatif g, de g, g implique l'égalité de g et de g.

Démontrer que, si f est une fonction complexe, définie et continue sur la droite réelle, 2π -périodique, dont la série de Fourier converge uniformément, la fonction f est alors égale à la somme de sa série de Fourier.

Deuxième partie

L'ensemble \mathcal{F} est inclus dans l'ensemble \mathcal{G} .

II-1°) <u>Une fonction f de F est la somme d'une série trigonométrique</u> :

Soit f une fonction donnée de l'ensemble F.

- a. Soit f la fonction, définie sur la droite réelle, impaire, périodique de période 2π , de restriction à l'intervalle I égale à la fonction f. Établir que cette fonction f est continûment dérivable sur la droite réelle.
- b. En déduire l'existence d'une suite complexe $(b_n)_{n-1}$ telle que, pour tout réel x de l'intervalle I, le réel f(x) soit égal à la somme de la série trigonométrique de terme général $b_n \sin(nx)$, n-1. Préciser la convergence de cette série.

II.2°) Inclusion de \mathcal{F} dans \mathcal{G} :

Soit f une fonction appartenant à l'ensemble \mathcal{F} ; démontrer que cette fonction f appartient aussi à l'ensemble \mathcal{G} . Est-ce que l'inclusion de \mathcal{F} dans \mathcal{G} est stricte ?

Troisième partie

Densité du sous-ensemble \mathcal{F} de \mathcal{G} dans \mathcal{G} pour la distance déduite de la norme de \mathcal{E} . Le sous-ensemble \mathcal{G} de \mathcal{E} est compact.

III-1°) Densité de F dans G:

Soit g une fonction appartenant à G; la fonction g est la somme d'une série trigonométrique de terme général $b_n \sin(nx)$, n_1 ; soit g_p la somme des p premiers termes de cette série (p est un entier strictement positif): $g_p(x) = \sum_{n=1}^p b_n \sin(nx)$.

Démontrer que pour tout entier p, p $_$ 1, la fonction g_p appartient au sous-ensemble \mathcal{F} . Établir que la fonction g est la limite dans l'espace vectoriel normé \mathcal{E} de la suite des fonctions g_p , p $_$ 1. En déduire que le sous-ensemble \mathcal{F} de \mathcal{G} est dense dans \mathcal{G} .

III-2°) Limite d'une suite convergente de fonctions appartenant à G:

Soit $(f_r)_{r \in \mathbb{N}}$ une suite de fonctions appartenant au sous-ensemble \mathcal{G} qui converge dans \mathcal{E} vers une fonction f. Par définition de \mathcal{G} , pour chaque fonction f_r , il existe une suite de nombres complexes $b_{r,n}$, n = 1, tels que

• la série de terme général n^2 $|b_r$, $_n|^2$, $_n$ 1, est convergente ; sa somme est majorée par $\frac{2}{\pi}$;

- pour tout entier n, n _ 1, et tout réel x de I, $f_r(x)$ est la somme de la série de terme général $b_{r,\;n}\sin(nx),\,n$ _ 1 : $f_r(x)=\sum_{n=1}^\infty\,b_{r,\;n}\sin(nx)$.
- a. Démontrer que, pour tout entier n fixé, n = 1, la suite $(b_{r, n})_{r \in \mathbb{N}}$ est convergente et a une limite b_n , qui est le nombre complexe défini par la relation ci-dessous :

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx.$$

- b. Établir que les nombres complexes b_n , n_1 , définis ci-dessus ont la propriété : la série de terme général $n^2 |b_n|^2$, n_1 , est convergente ; sa somme vérifie l'inégalité suivante : $\sum_{n=1}^{\infty} n^2 |b_n|^2 \frac{2}{\pi}$.
- c. En déduire que la fonction f appartient à l'ensemble G.

III-3°) Adhérences des sous-ensembles F et G dans E:

Déterminer l'adhérence du sous-ensemble G dans \mathcal{E} ; en déduire que G est fermé. Quelle est l'adhérence dans \mathcal{E} du sous-ensemble \mathcal{F} ?

III-4°) Le sous-ensemble G est compact :

a. Soit f une fonction appartenant au sous-ensemble \mathcal{F} . Démontrer, pour tout couple de réels x et y de l'intervalle I, vérifiant l'inégalité x_y, la relation :

$$|f(y)-f(x)| = \sqrt{y-x}$$
.

Utiliser, par exemple, l'expression de la différence f(y)-f(x) au moyen d'une intégrale.

b. Soit $(f_r)_{r\in \mathbb{N}}$ une suite de fonctions appartenant au sous-ensemble \mathcal{F} ; il est admis qu'il existe une suite extraite $(f_{\phi(r)})_{r\in \mathbb{N}}$ qui converge simplement en tout point de l'intervalle I d'abscisse rationnelle : pour tout rationnel z $(0_z < \pi)$ $(f_{\phi(r)}(z))_{r\in \mathbb{N}}$ est une suite convergente.

Démontrer que la suite des fonctions $g_r = f_{\phi(r)}$, $r \in \mathbb{N}$, converge uniformément sur l'intervalle I.

c. En déduire que le sous-ensemble G est compact.

FIN DU PROBLÈME FIN DE L'ÉPREUVE