CONCOURS D'ADMISSION 2009

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Exponentielles d'endomorphisme, intégrales et séries

Première partie

On désigne par $C^{\infty}(\mathbf{R})$ l'espace vectoriel des fonctions réelles, de classe C^{∞} , d'une variable réelle. On définit comme suit des endomorphismes de cet espace :

- pour toute $f \in C^{\infty}(\mathbf{R})$, (Xf)(x) = xf(x), (Df)(x) = f'(x), (Af)(x) = xf'(x),
- pour tout nombre réel t et pour toute $f \in C^{\infty}(\mathbf{R})$, $(\Phi_t f)(x) = f(e^t x)$.
- 1. Vérifier que la valeur en t=0 de la dérivée de la fonction $t\mapsto (\Phi_t f)(x)$ est égale à (Af)(x).

On va maintenant étudier les puissances de A et chercher le sens à donner à la formule $\exp(tA) = \Phi_t$.

- 2. Vérifier que, si f est un polynôme, la série $\sum_{n\geqslant 0}\frac{t^n}{n!}(A^nf)(x)$ est convergente et de somme $(\Phi_t f)(x)$.
 - **3.** Montrer que, pour tout entier n > 0, on a $D^n X = X D^n + n D^{n-1}$.
- **4.** Montrer que, pour tout entier n > 0, il existe des nombres réels positifs $\mu_{n,k}$, $k = 1, \ldots, n$, tels que $A^n = \sum_{k=1}^n \mu_{n,k} X^k D^k$, et exprimer $\mu_{n,k}$ en fonction des $\mu_{n-1,p}$, $p = 1, \ldots, n-1$. Préciser les valeurs de $\mu_{n,1}$ et $\mu_{n,n}$.

5. On désigne par f un polynôme d'une variable réelle. Démontrer la relation

$$\forall t, x \in \mathbf{R} \quad f(e^t x) = f(x) + \sum_{k \ge 1} \left(\sum_{n \ge k} \frac{t^n}{n!} \mu_{n,k} \right) x^k f^{(k)}(x) .$$

- **6.** Étant donné une suite de nombres réels a_k , $k \in \mathbb{N}$, comparer les rayons de convergence des séries entières $\sum_{k\geq 0} a_k x^k$ et $\sum_{k\geq 0} k a_k x^k$.
- 7. On se donne maintenant une fonction développable en série entière $f(x) = \sum_{k \ge 0} a_k x^k$ de rayon de convergence R > 0. On admettra la propriété suivante :
- (P) si |x| < R, la série entière en $h : \sum_{k \ge 0} \frac{h^k}{k!} f^{(k)}(x)$ a un rayon de convergence au moins égal à R |x|, et, si |h| < R |x|, on a $\sum_{k \ge 0} \frac{h^k}{k!} f^{(k)}(x) = f(x+h)$.
 - 7.a) Vérifier que, si |x| < R, il existe un réel $\gamma_x > 0$ tel que

$$|t| < \gamma_x \implies |(e^t - 1)x| < R - |x|.$$

7.b) Démontrer l'existence de nombres réels $\lambda_{n,k}$, $n,k \in \mathbb{N}^*$, indépendants de f et tels que l'on ait

$$\forall x \in]-R, R[\quad, \quad \forall t \in]-\gamma_x, \gamma_x[\quad, \quad f(e^t x) = f(x) + \sum_{k \geqslant 1} \left(\sum_{n \geqslant 1} \frac{t^n}{n!} \lambda_{n,k}\right) x^k f^{(k)}(x) .$$

7.c) Vérifier que

$$\lambda_{n,k} = \begin{cases} \mu_{n,k} & \text{si } k \leq n \\ 0 & \text{si } k > n \end{cases}.$$

[On pourra utiliser le résultat de la question 5.]

- **7.d)** Montrer que, pour $1 \leqslant k \leqslant n$, on a $\lambda_{n,k} \leqslant 2^n \frac{n!}{(k-1)!}$.
- **7.e)** On pose $Z_{n,k} = \frac{t^n}{n!} \lambda_{n,k} x^k f^{(k)}(x)$. Indiquer deux réels $\alpha > 0$ et $\eta > 0$ tels que

$$|x| < \alpha, |t| < \eta \Rightarrow \sum_{k \ge 1} \left(\sum_{n \ge 1} |Z_{n,k}| \right) < +\infty.$$

7.f) Montrer que, si $|x| < \alpha$ et $|t| < \eta$, la série $\sum_{n \ge 0} \frac{t^n}{n!} (A^n f)(x)$ est convergente et de somme $(\Phi_t f)(x)$.

Deuxième partie

Dans cette partie, on désigne par \mathcal{F} l'espace vectoriel des fonctions f réelles, d'une variable réelle, continues et telles que, pour tout entier $k \ge 0$, la fonction $x \mapsto x^k f(x)$ soit bornée.

8. Soit f une fonction de \mathcal{F} . Montrer que, pour tout entier $k \ge 0$, la fonction $x \mapsto x^k f(x)$ est intégrable sur \mathbf{R} .

On posera $m_k(f) = \int_{\mathbf{R}} x^k f(x) dx$.

- **9.** Soient f et g deux fonctions de \mathcal{F} .
- **9.a)** Montrer que, pour tout réel x, la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbf{R} .

On notera f * g la fonction $x \mapsto \int_{\mathbf{R}} f(x-y)g(y)dy$.

9.b) Montrer que f * g appartient à \mathcal{F} et écrire une formule de la forme

$$m_k(f * g) = \sum_{p=0}^{k} \gamma_{k,p} m_p(f) m_{k-p}(g),$$

où les $\gamma_{k,p}$ sont des coefficients à déterminer.

On admettra la commutativité et l'associativité de l'opération $(f,g) \mapsto f * g$.

Dans la suite du problème, on désigne par \mathcal{F}_0 l'ensemble des fonctions f de \mathcal{F} qui sont positives et telles que $m_0(f) = 1$ et $m_1(f) = 0$.

10. Étant donné des fonctions f_1, \ldots, f_n de \mathcal{F}_0 , calculer $m_0(f_1 * \ldots * f_n)$ et $m_1(f_1 * \ldots * f_n)$ puis exprimer $m_2(f_1 * \ldots * f_n)$ en fonction des $m_2(f_i)$, $i = 1, \ldots, n$.

Pour tout réel a > 0, on désigne par T_a l'endomorphisme de \mathcal{F} défini par $(T_a f)(x) = a f(ax)$.

11. Calculer $m_k(T_a f)$.

Dans la suite du problème on désigne par f_i , i = 1, 2, ..., des fonctions de \mathcal{F}_0 , et, pour tout n, on pose $F_n = f_1 * ... * f_n$. On suppose que tous les $m_2(f_i)$ sont majorés par une même constante C.

12.a) Montrer que, pour tout réel $\alpha > 0$, les deux intégrales $\int_{\alpha}^{+\infty} (T_n F_n)(x) dx$ et $\int_{-\infty}^{-\alpha} (T_n F_n)(x) dx$ tendent vers 0 lorsque $n \to +\infty$.

3

12.b) Étant donné une fonction h continue bornée sur \mathbf{R} , étudier le comportement de $\int_{\mathbf{R}} h(x)(T_nF_n)(x)dx$ lorsque $n\to +\infty$.

[On pourra considérer d'abord le cas où h(0) = 0.]

- 13.a) Établir une inégalité entre $m_4(f)$ et $m_2(f)^2$ lorsque $f \in \mathcal{F}_0$.
- **13.b)** Démontrer la formule, pour $n \ge 2$,

$$m_4(F_n) = \sum_{1 \leqslant i \leqslant n} m_4(f_i) + 6 \sum_{1 \leqslant i < j \leqslant n} m_2(f_i) m_2(f_j) .$$

13.c) Trouver une condition portant sur les $m_4(f_i)$ sous laquelle on ait, pour tout $\alpha > 0$,

$$\sum_{n\geqslant 1} \int_{\alpha}^{+\infty} (T_n F_n)(x) dx < +\infty .$$

* *

*