option P' Durée: 4 heures

On désigne par E l'espace vectoriel $\mathbf{R}^n(n=1,2,\cdots)$ muni de son produit scalaire usuel noté (|); par End E l'espace vectoriel des endomorphismes de E; par Ker A, Im A et A^* respectivement le noyau, le sous-espace image et l'adjoint d'un endomorphisme A; par F^{\perp} le sous-espace orthogonal d'un sous-espace vectoriel F de E. On note AB la composée de deux applications A et B, et Ax l'image d'un élément x par A.

Première partie

On dit qu'un endomorphisme A de E est positif si l'on a $(Ax|x) \ge 0$ pour tout x de E.

- 1. Soit A un endomorphisme symétrique de E.
 - a) Donner un critère, portant sur les valeurs propres de A, pour que A soit positif.
- b) Montrer que si A et B sont deux endomorphismes symétriques positifs tels que $B^2 = A$, A et B ont les mêmes sous-espaces propres.
- c) En déduire que si A est un endomorphisme symétrique positif, il existe un unique endomorphisme symétrique positif B tel que $B^2 = A$. On le notera $A^{1/2}$
 - 2. Donner un exemple simple d'endomorphisme positif mais non symétrique.
 - 3. Soit A un endomorphisme de E.
- a) Vérifier que A^*A est symétrique et positif. Comparer son noyau et celui de A, son image et celle de A^* .

 On posera $|A| = (A^*A)^{1/2}$.
 - b) Déterminer |kA|, k étant un réel.
- 4. Exemple: déterminer |A| lorsque n=3 et lorsque A est représenté dans la base naturelle de E par une matrice de la forme $\begin{pmatrix} 0 & \alpha & 0 \\ \beta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ où α et β sont non nuls.

Deuxième partie

On dit qu'un endomorphisme U de E est partiellement isométrique si l'on a ||Ux|| = ||x|| pour tout $x \in (\text{Ker } U)^{\perp}$.

- 5. Soit U un endomorphisme partiellement isométrique de E.
 - a) Montrer que l'on a (Ux|Uy) = (x|y) pour tous x et $y \in (\text{Ker } U)^{\perp}$.
 - b) Comparer U^*U et le projecteur orthogonal sur le sous-espace (Ker U) $^{\perp}$.
 - c) Montrer que U^* est partiellement isométrique et déterminer UU^* .
- 6. Soit U un endomorphisme de E; montrer que si U^*U est un projecteur, U est partiellement isométrique.
- 7. Le produit de deux endomorphismes partiellement isométriques est-il toujours partiellement isométrique?

- 8. Soit A un endomorphisme de E.
- a) Construire un endomorphisme partiellement isométrique U vérifiant |A| = UA et $(\text{Ker } U)^{\perp} = \text{Im } A$. Déterminer U^*UA .
 - b) Démontrer l'unicité de U.
 - 9. Déterminer U dans le cas de l'exemple de la question 4..

Troisième partie

On note Tr A la trace de A.

- 10. Soit T un endomorphisme tel que l'on ait $Tr(VT) \leq TrT$ pour tout automorphisme orthogonal V.
 - a) Montrer que T est symétrique [on pourra examiner d'abord le cas où n=2].
 - b) Montrer que T est positif.
- 11. Soit A un endomorphisme de E; on note G l'ensemble des endomorphismes partiellement isométriques V vérifiant $V^*VA = A$.

Montrer que la fonction réelle f sur G définie par f(V) = Tr(VA) est bornée, qu'elle atteint son maximum en au moins un élément V_0 , et qu'on a alors $V_0A = |A|$.

- 12. On fixe un endomorphisme symétrique positif A et deux endomorphismes partiellement isométriques U et V.
 - a) Vérifier que l'on a $Tr(V^*AV) \leq Tr A$.
 - b) Démontrer que l'on a $Tr(UVA) \leq Tr A$.

On pourra démontrer que

$$Tr(UVA) = \sum_i (A^{1/2}e_i|A^{1/2}V^*U^*e_i)$$

où (e_i) est une base orthonormée de E, puis que

$$Tr(UVA) \leq (\sum_i \|A^{1/2}e_i\|^2)^{1/2} (\sum_i \|A^{1/2}V^*U^*e_i\|^2)^{1/2}$$

13. Construire sur End E une norme N d'espace vectoriel telle que N(A) = Tr A si A est symétrique et positif.